量化非自杀性自伤特征在预测不同临床结果中的重要性:使用随机森林模型

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC ACS Applied Electronic Materials Pub Date : 2024-07-01 Epub Date: 2024-02-01 DOI:10.1007/s10964-023-01926-z
Zhenhai Wang, Yanrong Chen, Zhiyuan Tao, Maomei Yang, Dongjie Li, Liyun Jiang, Wei Zhang
{"title":"量化非自杀性自伤特征在预测不同临床结果中的重要性:使用随机森林模型","authors":"Zhenhai Wang, Yanrong Chen, Zhiyuan Tao, Maomei Yang, Dongjie Li, Liyun Jiang, Wei Zhang","doi":"10.1007/s10964-023-01926-z","DOIUrl":null,"url":null,"abstract":"<p><p>Existing research on non-suicidal self-injury (NSSI) among adolescents has primarily concentrated on general risk factors, leaving a significant gap in understanding the specific NSSI characteristics that predict diverse psychopathological outcomes. This study aims to address this gap by using Random Forests to discern the significant predictors of different clinical outcomes. The study tracked 348 adolescents (64.7% girls; mean age = 13.31, SD = 0.91) over 6 months. Initially, 46 characteristics of NSSI were evaluated for their potential to predict the repetition of NSSI, as well as depression, anxiety, and suicidal risks at a follow-up (T2). The findings revealed distinct predictors for each psychopathology. Specifically, psychological pain was identified as a significant predictor for depression, anxiety, and suicidal risks, while the perceived effectiveness of NSSI was crucial in forecasting its repetition. These findings imply that it is feasible to identify high-risk individuals by assessing key NSSI characteristics, and also highlight the importance of considering diverse NSSI characteristics when working with self-injurers.</p>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Quantifying the Importance of Non-Suicidal Self-Injury Characteristics in Predicting Different Clinical Outcomes: Using Random Forest Model.\",\"authors\":\"Zhenhai Wang, Yanrong Chen, Zhiyuan Tao, Maomei Yang, Dongjie Li, Liyun Jiang, Wei Zhang\",\"doi\":\"10.1007/s10964-023-01926-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Existing research on non-suicidal self-injury (NSSI) among adolescents has primarily concentrated on general risk factors, leaving a significant gap in understanding the specific NSSI characteristics that predict diverse psychopathological outcomes. This study aims to address this gap by using Random Forests to discern the significant predictors of different clinical outcomes. The study tracked 348 adolescents (64.7% girls; mean age = 13.31, SD = 0.91) over 6 months. Initially, 46 characteristics of NSSI were evaluated for their potential to predict the repetition of NSSI, as well as depression, anxiety, and suicidal risks at a follow-up (T2). The findings revealed distinct predictors for each psychopathology. Specifically, psychological pain was identified as a significant predictor for depression, anxiety, and suicidal risks, while the perceived effectiveness of NSSI was crucial in forecasting its repetition. These findings imply that it is feasible to identify high-risk individuals by assessing key NSSI characteristics, and also highlight the importance of considering diverse NSSI characteristics when working with self-injurers.</p>\",\"PeriodicalId\":3,\"journal\":{\"name\":\"ACS Applied Electronic Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Electronic Materials\",\"FirstCategoryId\":\"102\",\"ListUrlMain\":\"https://doi.org/10.1007/s10964-023-01926-z\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/2/1 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1007/s10964-023-01926-z","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/2/1 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

关于青少年非自杀性自伤(NSSI)的现有研究主要集中在一般风险因素上,对于预测不同心理病理结果的特定 NSSI 特征的理解还存在很大差距。本研究旨在通过使用随机森林来发现不同临床结果的重要预测因素,从而填补这一空白。本研究对 348 名青少年(64.7% 为女孩;平均年龄 = 13.31,SD = 0.91)进行了为期 6 个月的跟踪调查。最初,研究人员对 NSSI 的 46 个特征进行了评估,以确定这些特征是否能预测 NSSI 的重复发生,以及随访(T2)时的抑郁、焦虑和自杀风险。研究结果显示,每种心理病理学都有不同的预测因素。具体来说,心理痛苦被认为是抑郁、焦虑和自杀风险的重要预测因素,而对 NSSI 有效性的感知则是预测其重复发生的关键。这些研究结果表明,通过评估关键的 NSSI 特征来识别高危人群是可行的,同时也强调了在与自我伤害者合作时考虑不同 NSSI 特征的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Quantifying the Importance of Non-Suicidal Self-Injury Characteristics in Predicting Different Clinical Outcomes: Using Random Forest Model.

Existing research on non-suicidal self-injury (NSSI) among adolescents has primarily concentrated on general risk factors, leaving a significant gap in understanding the specific NSSI characteristics that predict diverse psychopathological outcomes. This study aims to address this gap by using Random Forests to discern the significant predictors of different clinical outcomes. The study tracked 348 adolescents (64.7% girls; mean age = 13.31, SD = 0.91) over 6 months. Initially, 46 characteristics of NSSI were evaluated for their potential to predict the repetition of NSSI, as well as depression, anxiety, and suicidal risks at a follow-up (T2). The findings revealed distinct predictors for each psychopathology. Specifically, psychological pain was identified as a significant predictor for depression, anxiety, and suicidal risks, while the perceived effectiveness of NSSI was crucial in forecasting its repetition. These findings imply that it is feasible to identify high-risk individuals by assessing key NSSI characteristics, and also highlight the importance of considering diverse NSSI characteristics when working with self-injurers.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
期刊最新文献
Vitamin B12: prevention of human beings from lethal diseases and its food application. Current status and obstacles of narrowing yield gaps of four major crops. Cold shock treatment alleviates pitting in sweet cherry fruit by enhancing antioxidant enzymes activity and regulating membrane lipid metabolism. Removal of proteins and lipids affects structure, in vitro digestion and physicochemical properties of rice flour modified by heat-moisture treatment. Investigating the impact of climate variables on the organic honey yield in Turkey using XGBoost machine learning.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1