在 LS-DYNA 中模拟分娩过程。

IF 1.7 4区 医学 Q4 BIOPHYSICS Journal of Biomechanical Engineering-Transactions of the Asme Pub Date : 2024-06-01 DOI:10.1115/1.4064594
Ru Tao, Michele J Grimm
{"title":"在 LS-DYNA 中模拟分娩过程。","authors":"Ru Tao, Michele J Grimm","doi":"10.1115/1.4064594","DOIUrl":null,"url":null,"abstract":"<p><p>Childbirth or labor, as the final phase of a pregnancy, is a biomechanical process that delivers the fetus from the uterus. It mainly involves two important biological structures in the mother, the uterus-generating the pushing force on the fetus-and the pelvis (bony pelvis and pelvic floor muscles)-resisting the movement of the fetus. The existing computational models developed in this field that simulate the childbirth process have focused on either the uterine expulsion force or the resistive structures of the pelvis, not both. An FEM model including both structures as a system was developed in this paper to simulate the fetus delivery process in LS-DYNA. Uterine active contraction was driven by contractile fiber elements using the Hill material model. The passive portion of the uterus and pelvic floor muscles were modeled with Neo Hookean and Mooney-Rivlin materials, respectively. The bony pelvis was modeled as a rigid body. The fetus was divided into three components: the head, neck, and body. Three uterine active contraction cycles were modeled. The model system was validated based on multiple outputs from the model, including the stress distribution within the uterus, the maximum Von Mises and principal stress on the pelvic floor muscles, the duration of the second stage of the labor, and the movement of the fetus. The developed model system can be applied to investigate the effects of pathomechanics related to labor, such as pelvic floor disorders and brachial plexus injury.</p>","PeriodicalId":54871,"journal":{"name":"Journal of Biomechanical Engineering-Transactions of the Asme","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Simulation of the Childbirth Process in LS-DYNA.\",\"authors\":\"Ru Tao, Michele J Grimm\",\"doi\":\"10.1115/1.4064594\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Childbirth or labor, as the final phase of a pregnancy, is a biomechanical process that delivers the fetus from the uterus. It mainly involves two important biological structures in the mother, the uterus-generating the pushing force on the fetus-and the pelvis (bony pelvis and pelvic floor muscles)-resisting the movement of the fetus. The existing computational models developed in this field that simulate the childbirth process have focused on either the uterine expulsion force or the resistive structures of the pelvis, not both. An FEM model including both structures as a system was developed in this paper to simulate the fetus delivery process in LS-DYNA. Uterine active contraction was driven by contractile fiber elements using the Hill material model. The passive portion of the uterus and pelvic floor muscles were modeled with Neo Hookean and Mooney-Rivlin materials, respectively. The bony pelvis was modeled as a rigid body. The fetus was divided into three components: the head, neck, and body. Three uterine active contraction cycles were modeled. The model system was validated based on multiple outputs from the model, including the stress distribution within the uterus, the maximum Von Mises and principal stress on the pelvic floor muscles, the duration of the second stage of the labor, and the movement of the fetus. The developed model system can be applied to investigate the effects of pathomechanics related to labor, such as pelvic floor disorders and brachial plexus injury.</p>\",\"PeriodicalId\":54871,\"journal\":{\"name\":\"Journal of Biomechanical Engineering-Transactions of the Asme\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Biomechanical Engineering-Transactions of the Asme\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1115/1.4064594\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biomechanical Engineering-Transactions of the Asme","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1115/1.4064594","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

分娩或生产是妊娠的最后阶段,是将胎儿从子宫中娩出的生物力学过程。它主要涉及母亲体内两个重要的生物结构:子宫(对胎儿产生推力)和骨盆(骨盆和骨盆底肌)(抵抗胎儿的运动)。该领域现有的模拟分娩过程的计算模型只关注子宫排出力或骨盆的阻力结构,而不是两者。本文开发了一个有限元模型,将这两种结构作为一个系统,在 LS-DYNA 中模拟胎儿娩出过程。子宫的主动收缩由使用希尔材料模型的收缩纤维元件驱动。子宫的被动部分和骨盆底肌肉分别使用 Neo Hookean 和 Mooney Rivlin 材料建模。骨盆以刚体建模。胎儿分为三个部分:头部、颈部和身体。对三个子宫主动收缩周期进行了建模。根据模型的多种输出结果对模型系统进行了验证,包括子宫内的应力分布、盆底肌肉的最大 Von Mises 和主应力、第二产程的持续时间以及胎儿的运动。所开发的模型系统可用于研究与分娩相关的病理力学影响,如盆底障碍和臂丛神经损伤。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Simulation of the Childbirth Process in LS-DYNA.

Childbirth or labor, as the final phase of a pregnancy, is a biomechanical process that delivers the fetus from the uterus. It mainly involves two important biological structures in the mother, the uterus-generating the pushing force on the fetus-and the pelvis (bony pelvis and pelvic floor muscles)-resisting the movement of the fetus. The existing computational models developed in this field that simulate the childbirth process have focused on either the uterine expulsion force or the resistive structures of the pelvis, not both. An FEM model including both structures as a system was developed in this paper to simulate the fetus delivery process in LS-DYNA. Uterine active contraction was driven by contractile fiber elements using the Hill material model. The passive portion of the uterus and pelvic floor muscles were modeled with Neo Hookean and Mooney-Rivlin materials, respectively. The bony pelvis was modeled as a rigid body. The fetus was divided into three components: the head, neck, and body. Three uterine active contraction cycles were modeled. The model system was validated based on multiple outputs from the model, including the stress distribution within the uterus, the maximum Von Mises and principal stress on the pelvic floor muscles, the duration of the second stage of the labor, and the movement of the fetus. The developed model system can be applied to investigate the effects of pathomechanics related to labor, such as pelvic floor disorders and brachial plexus injury.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.40
自引率
5.90%
发文量
169
审稿时长
4-8 weeks
期刊介绍: Artificial Organs and Prostheses; Bioinstrumentation and Measurements; Bioheat Transfer; Biomaterials; Biomechanics; Bioprocess Engineering; Cellular Mechanics; Design and Control of Biological Systems; Physiological Systems.
期刊最新文献
Image-Based Estimation of Left Ventricular Myocardial Stiffness. Phenomenological Muscle Constitutive Model With Actin-Titin Binding for Simulating Active Stretching. Regulatory Role of Collagen XI in the Establishment of Mechanical Properties of Tendons and Ligaments in Mice Is Tissue Dependent. Study of the Mechanism of Perceived Rotational Acceleration of a Bionic Semicircular Canal on the Basis of the "Circular Geometry Hypothesis". Walking Slope and Heavy Backpacks Affect Peak and Impulsive Lumbar Joint Contact Forces.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1