高光谱遥感中的降维策略:全面概述

IF 3.7 3区 地球科学 Q2 ENVIRONMENTAL SCIENCES Egyptian Journal of Remote Sensing and Space Sciences Pub Date : 2024-01-31 DOI:10.1016/j.ejrs.2024.01.005
Radhesyam Vaddi , Phaneendra Kumar B.L.N. , Prabukumar Manoharan , L. Agilandeeswari , V. Sangeetha
{"title":"高光谱遥感中的降维策略:全面概述","authors":"Radhesyam Vaddi ,&nbsp;Phaneendra Kumar B.L.N. ,&nbsp;Prabukumar Manoharan ,&nbsp;L. Agilandeeswari ,&nbsp;V. Sangeetha","doi":"10.1016/j.ejrs.2024.01.005","DOIUrl":null,"url":null,"abstract":"<div><p>The technological advancements in spectroscopy give rise to acquiring data about different materials on earth's surface which can be utilized in a variety of potential applications. But, the hundreds of spectral bands are generally equipped with highly correlated information with limited training samples. This will degrade the Hyperspectral Image (HSI) classification accuracy. So Dimensionality Reduction (DR) has become inevitable and necessary step need to incorporate before HSI classification. The main contribution of this work lies in comparative study and review on dimensionality reduction techniques for Hyperspectral remote sensing image classification. The related challenges and research directions are also discussed. This study will help the researchers in the Hyperspectral remote sensing community to choose the appropriate DR technique for classification which can be useful in various real time applications.</p></div>","PeriodicalId":48539,"journal":{"name":"Egyptian Journal of Remote Sensing and Space Sciences","volume":"27 1","pages":"Pages 82-92"},"PeriodicalIF":3.7000,"publicationDate":"2024-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S111098232400005X/pdfft?md5=4f8566035ed4e6be455f27322041dbe9&pid=1-s2.0-S111098232400005X-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Strategies for dimensionality reduction in hyperspectral remote sensing: A comprehensive overview\",\"authors\":\"Radhesyam Vaddi ,&nbsp;Phaneendra Kumar B.L.N. ,&nbsp;Prabukumar Manoharan ,&nbsp;L. Agilandeeswari ,&nbsp;V. Sangeetha\",\"doi\":\"10.1016/j.ejrs.2024.01.005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The technological advancements in spectroscopy give rise to acquiring data about different materials on earth's surface which can be utilized in a variety of potential applications. But, the hundreds of spectral bands are generally equipped with highly correlated information with limited training samples. This will degrade the Hyperspectral Image (HSI) classification accuracy. So Dimensionality Reduction (DR) has become inevitable and necessary step need to incorporate before HSI classification. The main contribution of this work lies in comparative study and review on dimensionality reduction techniques for Hyperspectral remote sensing image classification. The related challenges and research directions are also discussed. This study will help the researchers in the Hyperspectral remote sensing community to choose the appropriate DR technique for classification which can be useful in various real time applications.</p></div>\",\"PeriodicalId\":48539,\"journal\":{\"name\":\"Egyptian Journal of Remote Sensing and Space Sciences\",\"volume\":\"27 1\",\"pages\":\"Pages 82-92\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-01-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S111098232400005X/pdfft?md5=4f8566035ed4e6be455f27322041dbe9&pid=1-s2.0-S111098232400005X-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Egyptian Journal of Remote Sensing and Space Sciences\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S111098232400005X\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Egyptian Journal of Remote Sensing and Space Sciences","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S111098232400005X","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

光谱学技术的进步为获取地球表面不同材料的数据提供了可能,这些数据可用于各种潜在的应用领域。但是,数以百计的光谱波段一般都具有高度相关的信息,而且训练样本有限。这将降低高光谱图像(HSI)分类的准确性。因此,在进行高光谱图像分类之前,降维(DR)已成为不可避免的必要步骤。这项工作的主要贡献在于对用于高光谱遥感图像分类的降维技术进行了比较研究和评述。同时还讨论了相关的挑战和研究方向。这项研究将有助于高光谱遥感界的研究人员选择合适的降维技术进行分类,从而在各种实时应用中发挥作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Strategies for dimensionality reduction in hyperspectral remote sensing: A comprehensive overview

The technological advancements in spectroscopy give rise to acquiring data about different materials on earth's surface which can be utilized in a variety of potential applications. But, the hundreds of spectral bands are generally equipped with highly correlated information with limited training samples. This will degrade the Hyperspectral Image (HSI) classification accuracy. So Dimensionality Reduction (DR) has become inevitable and necessary step need to incorporate before HSI classification. The main contribution of this work lies in comparative study and review on dimensionality reduction techniques for Hyperspectral remote sensing image classification. The related challenges and research directions are also discussed. This study will help the researchers in the Hyperspectral remote sensing community to choose the appropriate DR technique for classification which can be useful in various real time applications.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
8.10
自引率
0.00%
发文量
85
审稿时长
48 weeks
期刊介绍: The Egyptian Journal of Remote Sensing and Space Sciences (EJRS) encompasses a comprehensive range of topics within Remote Sensing, Geographic Information Systems (GIS), planetary geology, and space technology development, including theories, applications, and modeling. EJRS aims to disseminate high-quality, peer-reviewed research focusing on the advancement of remote sensing and GIS technologies and their practical applications for effective planning, sustainable development, and environmental resource conservation. The journal particularly welcomes innovative papers with broad scientific appeal.
期刊最新文献
Efficient bundle optimization for accurate camera pose estimation in mobile augmented reality systems Revealing Potential Mineralization Zones Utilizing Landsat-9, ASTER and Airborne Radiometric Data at Elkharaza-Dara Area, North Eastern Desert, Egypt Potential of temporal satellite data analysis for detection of weed infestation in rice crop Visualization of humpback whale tracking on edge device using space-borne remote sensing data for Indian Ocean Phenology-based winter wheat classification for crop growth monitoring using multi-temporal sentinel-2 satellite data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1