Radhesyam Vaddi , Phaneendra Kumar B.L.N. , Prabukumar Manoharan , L. Agilandeeswari , V. Sangeetha
{"title":"高光谱遥感中的降维策略:全面概述","authors":"Radhesyam Vaddi , Phaneendra Kumar B.L.N. , Prabukumar Manoharan , L. Agilandeeswari , V. Sangeetha","doi":"10.1016/j.ejrs.2024.01.005","DOIUrl":null,"url":null,"abstract":"<div><p>The technological advancements in spectroscopy give rise to acquiring data about different materials on earth's surface which can be utilized in a variety of potential applications. But, the hundreds of spectral bands are generally equipped with highly correlated information with limited training samples. This will degrade the Hyperspectral Image (HSI) classification accuracy. So Dimensionality Reduction (DR) has become inevitable and necessary step need to incorporate before HSI classification. The main contribution of this work lies in comparative study and review on dimensionality reduction techniques for Hyperspectral remote sensing image classification. The related challenges and research directions are also discussed. This study will help the researchers in the Hyperspectral remote sensing community to choose the appropriate DR technique for classification which can be useful in various real time applications.</p></div>","PeriodicalId":48539,"journal":{"name":"Egyptian Journal of Remote Sensing and Space Sciences","volume":"27 1","pages":"Pages 82-92"},"PeriodicalIF":3.7000,"publicationDate":"2024-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S111098232400005X/pdfft?md5=4f8566035ed4e6be455f27322041dbe9&pid=1-s2.0-S111098232400005X-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Strategies for dimensionality reduction in hyperspectral remote sensing: A comprehensive overview\",\"authors\":\"Radhesyam Vaddi , Phaneendra Kumar B.L.N. , Prabukumar Manoharan , L. Agilandeeswari , V. Sangeetha\",\"doi\":\"10.1016/j.ejrs.2024.01.005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The technological advancements in spectroscopy give rise to acquiring data about different materials on earth's surface which can be utilized in a variety of potential applications. But, the hundreds of spectral bands are generally equipped with highly correlated information with limited training samples. This will degrade the Hyperspectral Image (HSI) classification accuracy. So Dimensionality Reduction (DR) has become inevitable and necessary step need to incorporate before HSI classification. The main contribution of this work lies in comparative study and review on dimensionality reduction techniques for Hyperspectral remote sensing image classification. The related challenges and research directions are also discussed. This study will help the researchers in the Hyperspectral remote sensing community to choose the appropriate DR technique for classification which can be useful in various real time applications.</p></div>\",\"PeriodicalId\":48539,\"journal\":{\"name\":\"Egyptian Journal of Remote Sensing and Space Sciences\",\"volume\":\"27 1\",\"pages\":\"Pages 82-92\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-01-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S111098232400005X/pdfft?md5=4f8566035ed4e6be455f27322041dbe9&pid=1-s2.0-S111098232400005X-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Egyptian Journal of Remote Sensing and Space Sciences\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S111098232400005X\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Egyptian Journal of Remote Sensing and Space Sciences","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S111098232400005X","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Strategies for dimensionality reduction in hyperspectral remote sensing: A comprehensive overview
The technological advancements in spectroscopy give rise to acquiring data about different materials on earth's surface which can be utilized in a variety of potential applications. But, the hundreds of spectral bands are generally equipped with highly correlated information with limited training samples. This will degrade the Hyperspectral Image (HSI) classification accuracy. So Dimensionality Reduction (DR) has become inevitable and necessary step need to incorporate before HSI classification. The main contribution of this work lies in comparative study and review on dimensionality reduction techniques for Hyperspectral remote sensing image classification. The related challenges and research directions are also discussed. This study will help the researchers in the Hyperspectral remote sensing community to choose the appropriate DR technique for classification which can be useful in various real time applications.
期刊介绍:
The Egyptian Journal of Remote Sensing and Space Sciences (EJRS) encompasses a comprehensive range of topics within Remote Sensing, Geographic Information Systems (GIS), planetary geology, and space technology development, including theories, applications, and modeling. EJRS aims to disseminate high-quality, peer-reviewed research focusing on the advancement of remote sensing and GIS technologies and their practical applications for effective planning, sustainable development, and environmental resource conservation. The journal particularly welcomes innovative papers with broad scientific appeal.