Chunlian An, Guyue Yang, Peng Li, Dengmei Zhou, Liangliang Tian
{"title":"基于非均匀线性阵列的脉冲噪声下方向查找方法研究","authors":"Chunlian An, Guyue Yang, Peng Li, Dengmei Zhou, Liangliang Tian","doi":"10.1155/2024/9936133","DOIUrl":null,"url":null,"abstract":"Direction of arrival (DOA) estimation under impulsive noise has always been an important research area in array signal processing. The traditional methods under impulsive noise mostly rely on prior parameters and have high computational complexity. Based on the filtering theory, we present an effective pretreatment filtering technology to cut out the impulse mixed in the array received data and employ the nonuniform linear array to improve the estimation performance further. First, according to the amplitude characteristics of impulse noise, the pretreatment filtering technology is proposed to cut out the impulse based on the median filter and sliding average filter, which is valid for both strong and weak impulsive noise. Second, the minimum redundant array is adopted to carry out array virtual expansion so that the array aperture can be increased and the estimation performance can be improved. Finally, based on the idea of matrix reconstruction, we propose the improved estimation of signal parameters via rotational invariance techniques algorithm and an improved root multiple signal classification algorithm for DOA estimation. Theoretical analysis and simulation results show that the proposed method has a simple processing process, small calculation load, good array expansion ability, and excellent noise adaptability. Moreover, the proposed methods greatly improve the direction-finding performance under the condition of low signal-to-noise ratio and strong impulsive noise.","PeriodicalId":48792,"journal":{"name":"Journal of Sensors","volume":"1 1","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Research on Direction Finding Method under Impulsive Noise Based on Nonuniform Linear Array\",\"authors\":\"Chunlian An, Guyue Yang, Peng Li, Dengmei Zhou, Liangliang Tian\",\"doi\":\"10.1155/2024/9936133\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Direction of arrival (DOA) estimation under impulsive noise has always been an important research area in array signal processing. The traditional methods under impulsive noise mostly rely on prior parameters and have high computational complexity. Based on the filtering theory, we present an effective pretreatment filtering technology to cut out the impulse mixed in the array received data and employ the nonuniform linear array to improve the estimation performance further. First, according to the amplitude characteristics of impulse noise, the pretreatment filtering technology is proposed to cut out the impulse based on the median filter and sliding average filter, which is valid for both strong and weak impulsive noise. Second, the minimum redundant array is adopted to carry out array virtual expansion so that the array aperture can be increased and the estimation performance can be improved. Finally, based on the idea of matrix reconstruction, we propose the improved estimation of signal parameters via rotational invariance techniques algorithm and an improved root multiple signal classification algorithm for DOA estimation. Theoretical analysis and simulation results show that the proposed method has a simple processing process, small calculation load, good array expansion ability, and excellent noise adaptability. Moreover, the proposed methods greatly improve the direction-finding performance under the condition of low signal-to-noise ratio and strong impulsive noise.\",\"PeriodicalId\":48792,\"journal\":{\"name\":\"Journal of Sensors\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2024-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Sensors\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1155/2024/9936133\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Sensors","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1155/2024/9936133","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
摘要
脉冲噪声下的到达方向(DOA)估计一直是阵列信号处理的一个重要研究领域。脉冲噪声下的传统方法大多依赖于先验参数,计算复杂度较高。基于滤波理论,我们提出了一种有效的预处理滤波技术,以去除阵列接收数据中的脉冲混杂,并采用非均匀线性阵列进一步提高估计性能。首先,根据脉冲噪声的振幅特性,提出了基于中值滤波器和滑动平均滤波器的预处理滤波技术,以滤除脉冲,该技术对强脉冲噪声和弱脉冲噪声均有效。其次,采用最小冗余阵列进行阵列虚扩展,从而增大阵列孔径,提高估计性能。最后,基于矩阵重构的思想,我们提出了通过旋转不变性技术改进的信号参数估计算法和改进的根多信号分类算法来进行 DOA 估计。理论分析和仿真结果表明,所提方法处理过程简单、计算量小、阵列扩展能力强、噪声适应性好。此外,所提出的方法大大提高了低信噪比和强脉冲噪声条件下的测向性能。
Research on Direction Finding Method under Impulsive Noise Based on Nonuniform Linear Array
Direction of arrival (DOA) estimation under impulsive noise has always been an important research area in array signal processing. The traditional methods under impulsive noise mostly rely on prior parameters and have high computational complexity. Based on the filtering theory, we present an effective pretreatment filtering technology to cut out the impulse mixed in the array received data and employ the nonuniform linear array to improve the estimation performance further. First, according to the amplitude characteristics of impulse noise, the pretreatment filtering technology is proposed to cut out the impulse based on the median filter and sliding average filter, which is valid for both strong and weak impulsive noise. Second, the minimum redundant array is adopted to carry out array virtual expansion so that the array aperture can be increased and the estimation performance can be improved. Finally, based on the idea of matrix reconstruction, we propose the improved estimation of signal parameters via rotational invariance techniques algorithm and an improved root multiple signal classification algorithm for DOA estimation. Theoretical analysis and simulation results show that the proposed method has a simple processing process, small calculation load, good array expansion ability, and excellent noise adaptability. Moreover, the proposed methods greatly improve the direction-finding performance under the condition of low signal-to-noise ratio and strong impulsive noise.
Journal of SensorsENGINEERING, ELECTRICAL & ELECTRONIC-INSTRUMENTS & INSTRUMENTATION
CiteScore
4.10
自引率
5.30%
发文量
833
审稿时长
18 weeks
期刊介绍:
Journal of Sensors publishes papers related to all aspects of sensors, from their theory and design, to the applications of complete sensing devices. All classes of sensor are covered, including acoustic, biological, chemical, electronic, electromagnetic (including optical), mechanical, proximity, and thermal. Submissions relating to wearable, implantable, and remote sensing devices are encouraged.
Envisaged applications include, but are not limited to:
-Medical, healthcare, and lifestyle monitoring
-Environmental and atmospheric monitoring
-Sensing for engineering, manufacturing and processing industries
-Transportation, navigation, and geolocation
-Vision, perception, and sensing for robots and UAVs
The journal welcomes articles that, as well as the sensor technology itself, consider the practical aspects of modern sensor implementation, such as networking, communications, signal processing, and data management.
As well as original research, the Journal of Sensors also publishes focused review articles that examine the state of the art, identify emerging trends, and suggest future directions for developing fields.