{"title":"一种新颖的三阶段生成模型,用于以多种风格对汉字进行骨骼化处理","authors":"Ye-Chuan Tian, Song-Hua Xu, Cheickna Sylla","doi":"10.1007/s11390-023-1337-8","DOIUrl":null,"url":null,"abstract":"<p>Skeletons of characters provide vital information to support a variety of tasks, e.g., optical character recognition, image restoration, stroke segmentation and extraction, and style learning and transfer. However, automatically skeletonizing Chinese characters poses a steep computational challenge due to the large volume of Chinese characters and their versatile styles, for which traditional image analysis approaches are error-prone and fragile. Current deep learning based approach requires a heavy amount of manual labeling efforts, which imposes serious limitations on the precision, robustness, scalability and generalizability of an algorithm to solve a specific problem. To tackle the above challenge, this paper introduces a novel three-staged deep generative model developed as an image-to-image translation approach, which significantly reduces the model’s demand for labeled training samples. The new model is built upon an improved G-net, an enhanced X-net, and a newly proposed F-net. As compellingly demonstrated by comprehensive experimental results, the new model is able to iteratively extract skeletons of Chinese characters in versatile styles with a high quality, which noticeably outperforms two state-of-the-art peer deep learning methods and a classical thinning algorithm in terms of <i>F</i>-measure, Hausdorff distance, and average Hausdorff distance.</p>","PeriodicalId":50222,"journal":{"name":"Journal of Computer Science and Technology","volume":"234 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2023-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Novel Three-Staged Generative Model for Skeletonizing Chinese Characters with Versatile Styles\",\"authors\":\"Ye-Chuan Tian, Song-Hua Xu, Cheickna Sylla\",\"doi\":\"10.1007/s11390-023-1337-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Skeletons of characters provide vital information to support a variety of tasks, e.g., optical character recognition, image restoration, stroke segmentation and extraction, and style learning and transfer. However, automatically skeletonizing Chinese characters poses a steep computational challenge due to the large volume of Chinese characters and their versatile styles, for which traditional image analysis approaches are error-prone and fragile. Current deep learning based approach requires a heavy amount of manual labeling efforts, which imposes serious limitations on the precision, robustness, scalability and generalizability of an algorithm to solve a specific problem. To tackle the above challenge, this paper introduces a novel three-staged deep generative model developed as an image-to-image translation approach, which significantly reduces the model’s demand for labeled training samples. The new model is built upon an improved G-net, an enhanced X-net, and a newly proposed F-net. As compellingly demonstrated by comprehensive experimental results, the new model is able to iteratively extract skeletons of Chinese characters in versatile styles with a high quality, which noticeably outperforms two state-of-the-art peer deep learning methods and a classical thinning algorithm in terms of <i>F</i>-measure, Hausdorff distance, and average Hausdorff distance.</p>\",\"PeriodicalId\":50222,\"journal\":{\"name\":\"Journal of Computer Science and Technology\",\"volume\":\"234 1\",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2023-11-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Computer Science and Technology\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s11390-023-1337-8\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computer Science and Technology","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s11390-023-1337-8","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
A Novel Three-Staged Generative Model for Skeletonizing Chinese Characters with Versatile Styles
Skeletons of characters provide vital information to support a variety of tasks, e.g., optical character recognition, image restoration, stroke segmentation and extraction, and style learning and transfer. However, automatically skeletonizing Chinese characters poses a steep computational challenge due to the large volume of Chinese characters and their versatile styles, for which traditional image analysis approaches are error-prone and fragile. Current deep learning based approach requires a heavy amount of manual labeling efforts, which imposes serious limitations on the precision, robustness, scalability and generalizability of an algorithm to solve a specific problem. To tackle the above challenge, this paper introduces a novel three-staged deep generative model developed as an image-to-image translation approach, which significantly reduces the model’s demand for labeled training samples. The new model is built upon an improved G-net, an enhanced X-net, and a newly proposed F-net. As compellingly demonstrated by comprehensive experimental results, the new model is able to iteratively extract skeletons of Chinese characters in versatile styles with a high quality, which noticeably outperforms two state-of-the-art peer deep learning methods and a classical thinning algorithm in terms of F-measure, Hausdorff distance, and average Hausdorff distance.
期刊介绍:
Journal of Computer Science and Technology (JCST), the first English language journal in the computer field published in China, is an international forum for scientists and engineers involved in all aspects of computer science and technology to publish high quality and refereed papers. Papers reporting original research and innovative applications from all parts of the world are welcome. Papers for publication in the journal are selected through rigorous peer review, to ensure originality, timeliness, relevance, and readability. While the journal emphasizes the publication of previously unpublished materials, selected conference papers with exceptional merit that require wider exposure are, at the discretion of the editors, also published, provided they meet the journal''s peer review standards. The journal also seeks clearly written survey and review articles from experts in the field, to promote insightful understanding of the state-of-the-art and technology trends.
Topics covered by Journal of Computer Science and Technology include but are not limited to:
-Computer Architecture and Systems
-Artificial Intelligence and Pattern Recognition
-Computer Networks and Distributed Computing
-Computer Graphics and Multimedia
-Software Systems
-Data Management and Data Mining
-Theory and Algorithms
-Emerging Areas