{"title":"通过优化氧等离子刻蚀,最大限度地提高同轴电弧等离子沉积法制造的纳米金刚石晶粒的可见拉曼分辨率","authors":"Sreenath Mylo Valappil, Abdelrahman Zkria, Phongsaphak Sittimart, Shinya Ohmagari, Tsuyoshi Yoshitake","doi":"10.1002/sia.7289","DOIUrl":null,"url":null,"abstract":"Among the nondestructive carbon material characterization tools, the prominence of visible Raman spectroscopy has surged remarkably for many years due to its ability to explore a diverse array of carbon bonding configurations. However, to fully unlock the distinctive features concealed within carbon composite materials, additional specimen treatments or precise spectroscope calibrations are necessary. In the same regard, the tiny diamond grain size (5–10 nm) and the pronounced amount of <i>sp</i><sup><i>2</i></sup> carbon in the ultrananocrystalline diamond film represent major challenges in visible light excitation. In this work, we employ calibrated oxygen plasma reactive ion etching conditions to manifest the nanodiamond visible Raman signature from ultrananocrystalline diamond/amorphous carbon composite (UNCD/a-C) films fabricated by coaxial arc plasma deposition. Upon plasma etching, the broad defect band in the visible Raman spectra converged toward the diamond characteristic Raman peak at 1332 cm<sup>−1</sup>. A detailed explanation of band components of the Raman spectra is extracted through peak fitting procedures. The results of Raman spectroscopy are further correlated with the electrical characteristics of the nitrogen-doped UNCD/a-C films due to the optimized oxygen plasma etching processes.","PeriodicalId":22062,"journal":{"name":"Surface and Interface Analysis","volume":"2 1","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2024-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Maximizing visible Raman resolution of nanodiamond grains fabricated by coaxial arc plasma deposition through oxygen plasma etching optimization\",\"authors\":\"Sreenath Mylo Valappil, Abdelrahman Zkria, Phongsaphak Sittimart, Shinya Ohmagari, Tsuyoshi Yoshitake\",\"doi\":\"10.1002/sia.7289\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Among the nondestructive carbon material characterization tools, the prominence of visible Raman spectroscopy has surged remarkably for many years due to its ability to explore a diverse array of carbon bonding configurations. However, to fully unlock the distinctive features concealed within carbon composite materials, additional specimen treatments or precise spectroscope calibrations are necessary. In the same regard, the tiny diamond grain size (5–10 nm) and the pronounced amount of <i>sp</i><sup><i>2</i></sup> carbon in the ultrananocrystalline diamond film represent major challenges in visible light excitation. In this work, we employ calibrated oxygen plasma reactive ion etching conditions to manifest the nanodiamond visible Raman signature from ultrananocrystalline diamond/amorphous carbon composite (UNCD/a-C) films fabricated by coaxial arc plasma deposition. Upon plasma etching, the broad defect band in the visible Raman spectra converged toward the diamond characteristic Raman peak at 1332 cm<sup>−1</sup>. A detailed explanation of band components of the Raman spectra is extracted through peak fitting procedures. The results of Raman spectroscopy are further correlated with the electrical characteristics of the nitrogen-doped UNCD/a-C films due to the optimized oxygen plasma etching processes.\",\"PeriodicalId\":22062,\"journal\":{\"name\":\"Surface and Interface Analysis\",\"volume\":\"2 1\",\"pages\":\"\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2024-01-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Surface and Interface Analysis\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1002/sia.7289\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Surface and Interface Analysis","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/sia.7289","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Maximizing visible Raman resolution of nanodiamond grains fabricated by coaxial arc plasma deposition through oxygen plasma etching optimization
Among the nondestructive carbon material characterization tools, the prominence of visible Raman spectroscopy has surged remarkably for many years due to its ability to explore a diverse array of carbon bonding configurations. However, to fully unlock the distinctive features concealed within carbon composite materials, additional specimen treatments or precise spectroscope calibrations are necessary. In the same regard, the tiny diamond grain size (5–10 nm) and the pronounced amount of sp2 carbon in the ultrananocrystalline diamond film represent major challenges in visible light excitation. In this work, we employ calibrated oxygen plasma reactive ion etching conditions to manifest the nanodiamond visible Raman signature from ultrananocrystalline diamond/amorphous carbon composite (UNCD/a-C) films fabricated by coaxial arc plasma deposition. Upon plasma etching, the broad defect band in the visible Raman spectra converged toward the diamond characteristic Raman peak at 1332 cm−1. A detailed explanation of band components of the Raman spectra is extracted through peak fitting procedures. The results of Raman spectroscopy are further correlated with the electrical characteristics of the nitrogen-doped UNCD/a-C films due to the optimized oxygen plasma etching processes.
期刊介绍:
Surface and Interface Analysis is devoted to the publication of papers dealing with the development and application of techniques for the characterization of surfaces, interfaces and thin films. Papers dealing with standardization and quantification are particularly welcome, and also those which deal with the application of these techniques to industrial problems. Papers dealing with the purely theoretical aspects of the technique will also be considered. Review articles will be published; prior consultation with one of the Editors is advised in these cases. Papers must clearly be of scientific value in the field and will be submitted to two independent referees. Contributions must be in English and must not have been published elsewhere, and authors must agree not to communicate the same material for publication to any other journal. Authors are invited to submit their papers for publication to John Watts (UK only), Jose Sanz (Rest of Europe), John T. Grant (all non-European countries, except Japan) or R. Shimizu (Japan only).