Maureen M. Sampson , Rachel K. Morgan , Steven A. Sloan , Kelly M. Bakulski
{"title":"从神经发育到神经退化的铅毒性单细胞研究:当前回顾与未来机遇","authors":"Maureen M. Sampson , Rachel K. Morgan , Steven A. Sloan , Kelly M. Bakulski","doi":"10.1016/j.cotox.2024.100464","DOIUrl":null,"url":null,"abstract":"<div><p>Human exposure to the metal lead (Pb) is prevalent and associated with adverse neurodevelopmental and neurodegenerative outcomes. Pb disrupts normal brain function by inducing oxidative stress and neuroinflammation, altering cellular metabolism, and displacing essential metals. Prior studies on the molecular impacts of Pb have examined bulk tissues, which collapse information across all cell types, or in targeted cells, which are limited to cell autonomous effects. These approaches are unable to represent the complete biological implications of Pb exposure because the brain is a cooperative network of highly heterogeneous cells, with cellular diversity and proportions shifting throughout development, by brain region, and with disease. New technologies are necessary to investigate whether Pb and other environmental exposures alter cell composition in the brain and whether they cause molecular changes in a cell-type-specific manner. Cutting-edge, single-cell approaches now enable research resolving cell-type-specific effects from bulk tissues. This article reviews existing Pb neurotoxicology studies with genome-wide molecular signatures and provides a path forward for the field to implement single-cell approaches with practical recommendations.</p></div>","PeriodicalId":93968,"journal":{"name":"Current opinion in toxicology","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Single-cell investigation of lead toxicity from neurodevelopment to neurodegeneration: Current review and future opportunities\",\"authors\":\"Maureen M. Sampson , Rachel K. Morgan , Steven A. Sloan , Kelly M. Bakulski\",\"doi\":\"10.1016/j.cotox.2024.100464\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Human exposure to the metal lead (Pb) is prevalent and associated with adverse neurodevelopmental and neurodegenerative outcomes. Pb disrupts normal brain function by inducing oxidative stress and neuroinflammation, altering cellular metabolism, and displacing essential metals. Prior studies on the molecular impacts of Pb have examined bulk tissues, which collapse information across all cell types, or in targeted cells, which are limited to cell autonomous effects. These approaches are unable to represent the complete biological implications of Pb exposure because the brain is a cooperative network of highly heterogeneous cells, with cellular diversity and proportions shifting throughout development, by brain region, and with disease. New technologies are necessary to investigate whether Pb and other environmental exposures alter cell composition in the brain and whether they cause molecular changes in a cell-type-specific manner. Cutting-edge, single-cell approaches now enable research resolving cell-type-specific effects from bulk tissues. This article reviews existing Pb neurotoxicology studies with genome-wide molecular signatures and provides a path forward for the field to implement single-cell approaches with practical recommendations.</p></div>\",\"PeriodicalId\":93968,\"journal\":{\"name\":\"Current opinion in toxicology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current opinion in toxicology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2468202024000068\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current opinion in toxicology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2468202024000068","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Single-cell investigation of lead toxicity from neurodevelopment to neurodegeneration: Current review and future opportunities
Human exposure to the metal lead (Pb) is prevalent and associated with adverse neurodevelopmental and neurodegenerative outcomes. Pb disrupts normal brain function by inducing oxidative stress and neuroinflammation, altering cellular metabolism, and displacing essential metals. Prior studies on the molecular impacts of Pb have examined bulk tissues, which collapse information across all cell types, or in targeted cells, which are limited to cell autonomous effects. These approaches are unable to represent the complete biological implications of Pb exposure because the brain is a cooperative network of highly heterogeneous cells, with cellular diversity and proportions shifting throughout development, by brain region, and with disease. New technologies are necessary to investigate whether Pb and other environmental exposures alter cell composition in the brain and whether they cause molecular changes in a cell-type-specific manner. Cutting-edge, single-cell approaches now enable research resolving cell-type-specific effects from bulk tissues. This article reviews existing Pb neurotoxicology studies with genome-wide molecular signatures and provides a path forward for the field to implement single-cell approaches with practical recommendations.