上下文自适应容错多传感器融合:实现故障安全的多业务目标车辆定位

IF 3.1 4区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Journal of Intelligent & Robotic Systems Pub Date : 2024-02-01 DOI:10.1007/s10846-023-01906-2
Nesrine Harbaoui, Khoder Makkawi, Nourdine Ait-Tmazirte, Maan El Badaoui El Najjar
{"title":"上下文自适应容错多传感器融合:实现故障安全的多业务目标车辆定位","authors":"Nesrine Harbaoui, Khoder Makkawi, Nourdine Ait-Tmazirte, Maan El Badaoui El Najjar","doi":"10.1007/s10846-023-01906-2","DOIUrl":null,"url":null,"abstract":"<p>In many transport applications, one of the safety critical function is the localization. This is all the more true for land transport applications such as autonomous vehicles. While the democratization of satellite positioning systems, such as GPS, Galileo, Beidou or Glonass, has made it possible to consider a global solution applicable anywhere in the world, the principle of positioning by receiving signals from satellites more than twenty thousand kilometers away shows limits when they are confronted with disturbances related to the environment close to the receiver. However, for these safety-critical applications, the requirements are strong and sometimes even conflicting. The developed function must meet a defined level of precision, availability, continuity of service, integrity, operational safety and finally robustness to environment changes. Taken separately, these requirements can be achieved by actions recommended by the literature. For more precision and availability, coupling between absolute GNSS data and relative INS and odometer data, is recommended. To increase safety and integrity, a fault detection layer is essential, but this will negatively impact availability. One therefore needs a fault management layer. A harmonious policy, thought at the function design, makes it possible to achieve all the objectives. In this study, we propose a framework based on a tripartite approach: the tight fusion of GNSS and IMU data, the development of a diagnostic layer based on information theory and using the very promising alpha Rényi divergence, as well as a fault isolation layer. The diagnostic layer is designed to be robust and adaptive to changing environment through a deep neural network. The proposed framework is tested on data acquired in the field. Encouraging results allow to consider the generalization of the concept.</p>","PeriodicalId":54794,"journal":{"name":"Journal of Intelligent & Robotic Systems","volume":null,"pages":null},"PeriodicalIF":3.1000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Context Adaptive Fault Tolerant Multi-sensor fusion: Towards a Fail-Safe Multi Operational Objective Vehicle Localization\",\"authors\":\"Nesrine Harbaoui, Khoder Makkawi, Nourdine Ait-Tmazirte, Maan El Badaoui El Najjar\",\"doi\":\"10.1007/s10846-023-01906-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In many transport applications, one of the safety critical function is the localization. This is all the more true for land transport applications such as autonomous vehicles. While the democratization of satellite positioning systems, such as GPS, Galileo, Beidou or Glonass, has made it possible to consider a global solution applicable anywhere in the world, the principle of positioning by receiving signals from satellites more than twenty thousand kilometers away shows limits when they are confronted with disturbances related to the environment close to the receiver. However, for these safety-critical applications, the requirements are strong and sometimes even conflicting. The developed function must meet a defined level of precision, availability, continuity of service, integrity, operational safety and finally robustness to environment changes. Taken separately, these requirements can be achieved by actions recommended by the literature. For more precision and availability, coupling between absolute GNSS data and relative INS and odometer data, is recommended. To increase safety and integrity, a fault detection layer is essential, but this will negatively impact availability. One therefore needs a fault management layer. A harmonious policy, thought at the function design, makes it possible to achieve all the objectives. In this study, we propose a framework based on a tripartite approach: the tight fusion of GNSS and IMU data, the development of a diagnostic layer based on information theory and using the very promising alpha Rényi divergence, as well as a fault isolation layer. The diagnostic layer is designed to be robust and adaptive to changing environment through a deep neural network. The proposed framework is tested on data acquired in the field. Encouraging results allow to consider the generalization of the concept.</p>\",\"PeriodicalId\":54794,\"journal\":{\"name\":\"Journal of Intelligent & Robotic Systems\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Intelligent & Robotic Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s10846-023-01906-2\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Intelligent & Robotic Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s10846-023-01906-2","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

在许多运输应用中,安全的关键功能之一是定位。对于自动驾驶汽车等陆地运输应用来说,更是如此。虽然卫星定位系统(如 GPS、伽利略、北斗或格洛纳斯)的民主化使我们有可能考虑一种适用于世界任何地方的全球解决方案,但通过接收来自两万公里以外卫星的信号进行定位的原理,在遇到与接收器附近环境有关的干扰时就会显示出局限性。然而,对于这些安全关键型应用,要求非常严格,有时甚至相互冲突。所开发的功能必须满足规定的精度、可用性、服务连续性、完整性、操作安全性以及对环境变化的稳健性。分别来看,这些要求可以通过文献建议的措施来实现。为了提高精度和可用性,建议将全球导航卫星系统的绝对数据与 INS 和里程表的相对数据结合起来。为提高安全性和完整性,故障检测层必不可少,但这将对可用性产生负面影响。因此,我们需要一个故障管理层。在功能设计时考虑到和谐的政策,就有可能实现所有目标。在本研究中,我们提出了一个基于三方方法的框架:GNSS 和 IMU 数据的紧密融合、基于信息论并利用前景广阔的阿尔法雷尼发散法开发的诊断层以及故障隔离层。诊断层是通过深度神经网络设计的,具有鲁棒性并能适应不断变化的环境。所提出的框架在实地获取的数据上进行了测试。令人鼓舞的结果使我们可以考虑推广这一概念。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Context Adaptive Fault Tolerant Multi-sensor fusion: Towards a Fail-Safe Multi Operational Objective Vehicle Localization

In many transport applications, one of the safety critical function is the localization. This is all the more true for land transport applications such as autonomous vehicles. While the democratization of satellite positioning systems, such as GPS, Galileo, Beidou or Glonass, has made it possible to consider a global solution applicable anywhere in the world, the principle of positioning by receiving signals from satellites more than twenty thousand kilometers away shows limits when they are confronted with disturbances related to the environment close to the receiver. However, for these safety-critical applications, the requirements are strong and sometimes even conflicting. The developed function must meet a defined level of precision, availability, continuity of service, integrity, operational safety and finally robustness to environment changes. Taken separately, these requirements can be achieved by actions recommended by the literature. For more precision and availability, coupling between absolute GNSS data and relative INS and odometer data, is recommended. To increase safety and integrity, a fault detection layer is essential, but this will negatively impact availability. One therefore needs a fault management layer. A harmonious policy, thought at the function design, makes it possible to achieve all the objectives. In this study, we propose a framework based on a tripartite approach: the tight fusion of GNSS and IMU data, the development of a diagnostic layer based on information theory and using the very promising alpha Rényi divergence, as well as a fault isolation layer. The diagnostic layer is designed to be robust and adaptive to changing environment through a deep neural network. The proposed framework is tested on data acquired in the field. Encouraging results allow to consider the generalization of the concept.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Intelligent & Robotic Systems
Journal of Intelligent & Robotic Systems 工程技术-机器人学
CiteScore
7.00
自引率
9.10%
发文量
219
审稿时长
6 months
期刊介绍: The Journal of Intelligent and Robotic Systems bridges the gap between theory and practice in all areas of intelligent systems and robotics. It publishes original, peer reviewed contributions from initial concept and theory to prototyping to final product development and commercialization. On the theoretical side, the journal features papers focusing on intelligent systems engineering, distributed intelligence systems, multi-level systems, intelligent control, multi-robot systems, cooperation and coordination of unmanned vehicle systems, etc. On the application side, the journal emphasizes autonomous systems, industrial robotic systems, multi-robot systems, aerial vehicles, mobile robot platforms, underwater robots, sensors, sensor-fusion, and sensor-based control. Readers will also find papers on real applications of intelligent and robotic systems (e.g., mechatronics, manufacturing, biomedical, underwater, humanoid, mobile/legged robot and space applications, etc.).
期刊最新文献
UAV Routing for Enhancing the Performance of a Classifier-in-the-loop DFT-VSLAM: A Dynamic Optical Flow Tracking VSLAM Method Design and Development of a Robust Control Platform for a 3-Finger Robotic Gripper Using EMG-Derived Hand Muscle Signals in NI LabVIEW Neural Network-based Adaptive Finite-time Control for 2-DOF Helicopter Systems with Prescribed Performance and Input Saturation Six-Degree-of-Freedom Pose Estimation Method for Multi-Source Feature Points Based on Fully Convolutional Neural Network
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1