Kang Kit Ong, Abdul Qaiyum Ramle, Min Phin Ng, Siew Huah Lim, Kae Shin Sim, Chun Hoe Tan
{"title":"计算和体外阐明作为潜在化疗药物的吲哚啉-巴比妥酸齐聚物","authors":"Kang Kit Ong, Abdul Qaiyum Ramle, Min Phin Ng, Siew Huah Lim, Kae Shin Sim, Chun Hoe Tan","doi":"10.2174/0115701808279494231206060106","DOIUrl":null,"url":null,"abstract":"Introduction:: The continuous pursuit of novel chemotherapeutical agents with improved efficacy and reduced adverse effects remains a critical area of research despite advancements in chemotherapy. We have previously synthesized indolenine and barbituric acid zwitterion scaffolds 1–10 sustainably; however, their precise chemotherapeutical properties are still lacking. Methods:: In this present work, we conducted in silico ADMET analyses, molecular docking calculations, DNA binding studies, and cytotoxicity assays on these zwitterions. Results and Discussion: Among the 10 zwitterions, zwitterion 3 bearing a methoxy group demonstrated the highest drug-likeness score, low toxicity, as well as no violation of Lipinski’s rule of five and Veber’s rule. Both molecular docking calculations and DNA binding studies suggested that the minor groove of DNA is the most probable molecular target of 3 among the others (i.e., topoisomerase and tubulin). In addition, zwitterion 3 exhibited selective cytotoxicity against a wide array of human cancer cell lines without noticeable effect against the normal human colon fibroblast CCD- 18Co. Conclusion:: Overall, these preliminary findings from our combined computational and experimental strategy suggested that 3 remains promising for further elaboration as a chemotherapeutic agent.","PeriodicalId":18059,"journal":{"name":"Letters in Drug Design & Discovery","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2024-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Computational and In vitro Elucidation of Indolenine-barbituric Acid Zwitterions as Potential Chemotherapeutical Agents\",\"authors\":\"Kang Kit Ong, Abdul Qaiyum Ramle, Min Phin Ng, Siew Huah Lim, Kae Shin Sim, Chun Hoe Tan\",\"doi\":\"10.2174/0115701808279494231206060106\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Introduction:: The continuous pursuit of novel chemotherapeutical agents with improved efficacy and reduced adverse effects remains a critical area of research despite advancements in chemotherapy. We have previously synthesized indolenine and barbituric acid zwitterion scaffolds 1–10 sustainably; however, their precise chemotherapeutical properties are still lacking. Methods:: In this present work, we conducted in silico ADMET analyses, molecular docking calculations, DNA binding studies, and cytotoxicity assays on these zwitterions. Results and Discussion: Among the 10 zwitterions, zwitterion 3 bearing a methoxy group demonstrated the highest drug-likeness score, low toxicity, as well as no violation of Lipinski’s rule of five and Veber’s rule. Both molecular docking calculations and DNA binding studies suggested that the minor groove of DNA is the most probable molecular target of 3 among the others (i.e., topoisomerase and tubulin). In addition, zwitterion 3 exhibited selective cytotoxicity against a wide array of human cancer cell lines without noticeable effect against the normal human colon fibroblast CCD- 18Co. Conclusion:: Overall, these preliminary findings from our combined computational and experimental strategy suggested that 3 remains promising for further elaboration as a chemotherapeutic agent.\",\"PeriodicalId\":18059,\"journal\":{\"name\":\"Letters in Drug Design & Discovery\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2024-02-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Letters in Drug Design & Discovery\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.2174/0115701808279494231206060106\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CHEMISTRY, MEDICINAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Letters in Drug Design & Discovery","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2174/0115701808279494231206060106","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
Computational and In vitro Elucidation of Indolenine-barbituric Acid Zwitterions as Potential Chemotherapeutical Agents
Introduction:: The continuous pursuit of novel chemotherapeutical agents with improved efficacy and reduced adverse effects remains a critical area of research despite advancements in chemotherapy. We have previously synthesized indolenine and barbituric acid zwitterion scaffolds 1–10 sustainably; however, their precise chemotherapeutical properties are still lacking. Methods:: In this present work, we conducted in silico ADMET analyses, molecular docking calculations, DNA binding studies, and cytotoxicity assays on these zwitterions. Results and Discussion: Among the 10 zwitterions, zwitterion 3 bearing a methoxy group demonstrated the highest drug-likeness score, low toxicity, as well as no violation of Lipinski’s rule of five and Veber’s rule. Both molecular docking calculations and DNA binding studies suggested that the minor groove of DNA is the most probable molecular target of 3 among the others (i.e., topoisomerase and tubulin). In addition, zwitterion 3 exhibited selective cytotoxicity against a wide array of human cancer cell lines without noticeable effect against the normal human colon fibroblast CCD- 18Co. Conclusion:: Overall, these preliminary findings from our combined computational and experimental strategy suggested that 3 remains promising for further elaboration as a chemotherapeutic agent.
期刊介绍:
Aims & Scope
Letters in Drug Design & Discovery publishes letters, mini-reviews, highlights and guest edited thematic issues in all areas of rational drug design and discovery including medicinal chemistry, in-silico drug design, combinatorial chemistry, high-throughput screening, drug targets, and structure-activity relationships. The emphasis is on publishing quality papers very rapidly by taking full advantage of latest Internet technology for both submission and review of manuscripts. The online journal is an essential reading to all pharmaceutical scientists involved in research in drug design and discovery.