Antonis Elia , Matthew J. Barlow , Matthew J. Lees , Georgios Petri , Michail E. Keramidas
{"title":"非潜水员在重复一系列静态和动态呼吸暂停后的压力生物标志物变化","authors":"Antonis Elia , Matthew J. Barlow , Matthew J. Lees , Georgios Petri , Michail E. Keramidas","doi":"10.1016/j.resp.2024.104228","DOIUrl":null,"url":null,"abstract":"<div><h3>Purpose</h3><p>This study examined the magnitude of physiological strain imposed by repeated maximal static and dynamic apneas through assessing a panel of stress-related biomarkers.</p></div><div><h3>Methods</h3><p>Eleven healthy men performed on three separate occasions (≥72-h apart): a series of five repeated maximal (i) static (STA) or (ii) dynamic apneas (DYN) or (iii) a static eupneic protocol (CTL). Venous blood samples were drawn at 30, 90, and 180-min after each protocol to determine ischaemia modified albumin (IMA), neuron-specific enolase (NSE), myoglobin, and high sensitivity cardiac troponin T (hscTnT) concentrations.</p></div><div><h3>Results</h3><p>IMA was elevated after the apnoeic interventions (STA,+86%;DYN,+332%,p ≤ 0.047) but not CTL (p = 0.385). Myoglobin was higher than baseline (23.6 ± 3.9 ng/mL) 30-min post DYN (+70%,38.8 ± 13.3 ng/mL,p = 0.030). A greater myoglobin release was recorded in DYN compared with STA and CTL (p ≤ 0.035). No changes were observed in NSE (p = 0.207) or hscTnT (p = 0.274).</p></div><div><h3>Conclusions</h3><p>Five repeated maximal DYN led to a greater muscle injury compared with STA but neither elicited myocardial injury or neuronal-parenchymal damage.</p></div>","PeriodicalId":20961,"journal":{"name":"Respiratory Physiology & Neurobiology","volume":"323 ","pages":"Article 104228"},"PeriodicalIF":1.9000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1569904824000211/pdfft?md5=ef817c12d93152298a2659dd8a435fc9&pid=1-s2.0-S1569904824000211-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Stress biomarker changes following a series of repeated static and dynamic apneas in non-divers\",\"authors\":\"Antonis Elia , Matthew J. Barlow , Matthew J. Lees , Georgios Petri , Michail E. Keramidas\",\"doi\":\"10.1016/j.resp.2024.104228\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Purpose</h3><p>This study examined the magnitude of physiological strain imposed by repeated maximal static and dynamic apneas through assessing a panel of stress-related biomarkers.</p></div><div><h3>Methods</h3><p>Eleven healthy men performed on three separate occasions (≥72-h apart): a series of five repeated maximal (i) static (STA) or (ii) dynamic apneas (DYN) or (iii) a static eupneic protocol (CTL). Venous blood samples were drawn at 30, 90, and 180-min after each protocol to determine ischaemia modified albumin (IMA), neuron-specific enolase (NSE), myoglobin, and high sensitivity cardiac troponin T (hscTnT) concentrations.</p></div><div><h3>Results</h3><p>IMA was elevated after the apnoeic interventions (STA,+86%;DYN,+332%,p ≤ 0.047) but not CTL (p = 0.385). Myoglobin was higher than baseline (23.6 ± 3.9 ng/mL) 30-min post DYN (+70%,38.8 ± 13.3 ng/mL,p = 0.030). A greater myoglobin release was recorded in DYN compared with STA and CTL (p ≤ 0.035). No changes were observed in NSE (p = 0.207) or hscTnT (p = 0.274).</p></div><div><h3>Conclusions</h3><p>Five repeated maximal DYN led to a greater muscle injury compared with STA but neither elicited myocardial injury or neuronal-parenchymal damage.</p></div>\",\"PeriodicalId\":20961,\"journal\":{\"name\":\"Respiratory Physiology & Neurobiology\",\"volume\":\"323 \",\"pages\":\"Article 104228\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S1569904824000211/pdfft?md5=ef817c12d93152298a2659dd8a435fc9&pid=1-s2.0-S1569904824000211-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Respiratory Physiology & Neurobiology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1569904824000211\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Respiratory Physiology & Neurobiology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1569904824000211","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSIOLOGY","Score":null,"Total":0}
Stress biomarker changes following a series of repeated static and dynamic apneas in non-divers
Purpose
This study examined the magnitude of physiological strain imposed by repeated maximal static and dynamic apneas through assessing a panel of stress-related biomarkers.
Methods
Eleven healthy men performed on three separate occasions (≥72-h apart): a series of five repeated maximal (i) static (STA) or (ii) dynamic apneas (DYN) or (iii) a static eupneic protocol (CTL). Venous blood samples were drawn at 30, 90, and 180-min after each protocol to determine ischaemia modified albumin (IMA), neuron-specific enolase (NSE), myoglobin, and high sensitivity cardiac troponin T (hscTnT) concentrations.
Results
IMA was elevated after the apnoeic interventions (STA,+86%;DYN,+332%,p ≤ 0.047) but not CTL (p = 0.385). Myoglobin was higher than baseline (23.6 ± 3.9 ng/mL) 30-min post DYN (+70%,38.8 ± 13.3 ng/mL,p = 0.030). A greater myoglobin release was recorded in DYN compared with STA and CTL (p ≤ 0.035). No changes were observed in NSE (p = 0.207) or hscTnT (p = 0.274).
Conclusions
Five repeated maximal DYN led to a greater muscle injury compared with STA but neither elicited myocardial injury or neuronal-parenchymal damage.
期刊介绍:
Respiratory Physiology & Neurobiology (RESPNB) publishes original articles and invited reviews concerning physiology and pathophysiology of respiration in its broadest sense.
Although a special focus is on topics in neurobiology, high quality papers in respiratory molecular and cellular biology are also welcome, as are high-quality papers in traditional areas, such as:
-Mechanics of breathing-
Gas exchange and acid-base balance-
Respiration at rest and exercise-
Respiration in unusual conditions, like high or low pressure or changes of temperature, low ambient oxygen-
Embryonic and adult respiration-
Comparative respiratory physiology.
Papers on clinical aspects, original methods, as well as theoretical papers are also considered as long as they foster the understanding of respiratory physiology and pathophysiology.