Devesh Sharma, Aditya Sharma, S. K. Panda, Mukand S. Babel, Manish Kumar
{"title":"印度拉贾斯坦邦半干旱流域的降雨小波分析和水文模型应用","authors":"Devesh Sharma, Aditya Sharma, S. K. Panda, Mukand S. Babel, Manish Kumar","doi":"10.1002/clen.202300223","DOIUrl":null,"url":null,"abstract":"Rainfall–runoff modeling requires a selection of a suitable hydrologic model for the determination of an accurate quantity. A better understanding of rainfall–runoff processes is important for stream flow generation within a river basin. This study investigate the long-term spatial–temporal trend of rainfall and streamflow using the hydrologic engineering center-hydrologic modeling system (HEC-HMS) model to understand the rainfall–runoff dynamics in the Banas River basin. Rainfall variability was analyzed for two periods: 1971–1995 and 1996–2020. Continuous wavelet transform was used to analyze the periodicity and the inter-seasonal relationship in rainfall. HEC-GeoHMS was used to generate the various inputs for the hydrologic modeling inputs for the HEC-HMS model. Initial constant loss and ModClark transform method were used to set up the HEC-HMS model for the study area. Calibration and validation of the model were performed using 3 years of observed data 2010–2012 and 2013–2015, respectively. Statistical model efficiency was checked using the coefficient of determination (<i>R</i><sup>2</sup>), Nash–Sutcliffe efficiency, and root mean squared error to evaluate the performance of the HEC-HMS model. The finding indicated that the <i>R</i><sup>2</sup> values are 0.80 for calibration and 0.82 for validation periods, respectively, which are in good arrangement with the measured values. This study analyzes the relationship between rainfall and runoff, which will aid in proper and efficient water resource management.","PeriodicalId":10306,"journal":{"name":"Clean-soil Air Water","volume":"21 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Wavelet analysis of rainfall and application of hydrological model in a semi-arid river basin of Rajasthan, India\",\"authors\":\"Devesh Sharma, Aditya Sharma, S. K. Panda, Mukand S. Babel, Manish Kumar\",\"doi\":\"10.1002/clen.202300223\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Rainfall–runoff modeling requires a selection of a suitable hydrologic model for the determination of an accurate quantity. A better understanding of rainfall–runoff processes is important for stream flow generation within a river basin. This study investigate the long-term spatial–temporal trend of rainfall and streamflow using the hydrologic engineering center-hydrologic modeling system (HEC-HMS) model to understand the rainfall–runoff dynamics in the Banas River basin. Rainfall variability was analyzed for two periods: 1971–1995 and 1996–2020. Continuous wavelet transform was used to analyze the periodicity and the inter-seasonal relationship in rainfall. HEC-GeoHMS was used to generate the various inputs for the hydrologic modeling inputs for the HEC-HMS model. Initial constant loss and ModClark transform method were used to set up the HEC-HMS model for the study area. Calibration and validation of the model were performed using 3 years of observed data 2010–2012 and 2013–2015, respectively. Statistical model efficiency was checked using the coefficient of determination (<i>R</i><sup>2</sup>), Nash–Sutcliffe efficiency, and root mean squared error to evaluate the performance of the HEC-HMS model. The finding indicated that the <i>R</i><sup>2</sup> values are 0.80 for calibration and 0.82 for validation periods, respectively, which are in good arrangement with the measured values. This study analyzes the relationship between rainfall and runoff, which will aid in proper and efficient water resource management.\",\"PeriodicalId\":10306,\"journal\":{\"name\":\"Clean-soil Air Water\",\"volume\":\"21 1\",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2024-02-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Clean-soil Air Water\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1002/clen.202300223\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clean-soil Air Water","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1002/clen.202300223","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Wavelet analysis of rainfall and application of hydrological model in a semi-arid river basin of Rajasthan, India
Rainfall–runoff modeling requires a selection of a suitable hydrologic model for the determination of an accurate quantity. A better understanding of rainfall–runoff processes is important for stream flow generation within a river basin. This study investigate the long-term spatial–temporal trend of rainfall and streamflow using the hydrologic engineering center-hydrologic modeling system (HEC-HMS) model to understand the rainfall–runoff dynamics in the Banas River basin. Rainfall variability was analyzed for two periods: 1971–1995 and 1996–2020. Continuous wavelet transform was used to analyze the periodicity and the inter-seasonal relationship in rainfall. HEC-GeoHMS was used to generate the various inputs for the hydrologic modeling inputs for the HEC-HMS model. Initial constant loss and ModClark transform method were used to set up the HEC-HMS model for the study area. Calibration and validation of the model were performed using 3 years of observed data 2010–2012 and 2013–2015, respectively. Statistical model efficiency was checked using the coefficient of determination (R2), Nash–Sutcliffe efficiency, and root mean squared error to evaluate the performance of the HEC-HMS model. The finding indicated that the R2 values are 0.80 for calibration and 0.82 for validation periods, respectively, which are in good arrangement with the measured values. This study analyzes the relationship between rainfall and runoff, which will aid in proper and efficient water resource management.
期刊介绍:
CLEAN covers all aspects of Sustainability and Environmental Safety. The journal focuses on organ/human--environment interactions giving interdisciplinary insights on a broad range of topics including air pollution, waste management, the water cycle, and environmental conservation. With a 2019 Journal Impact Factor of 1.603 (Journal Citation Reports (Clarivate Analytics, 2020), the journal publishes an attractive mixture of peer-reviewed scientific reviews, research papers, and short communications.
Papers dealing with environmental sustainability issues from such fields as agriculture, biological sciences, energy, food sciences, geography, geology, meteorology, nutrition, soil and water sciences, etc., are welcome.