用于 WMSN 相互验证和密钥协议的 PUF 与生理数据组合方法

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC ACS Applied Electronic Materials Pub Date : 2024-02-02 DOI:10.1007/s10723-023-09731-5
Shanvendra Rai, Rituparna Paul, Subhasish Banerjee, Preetisudha Meher, Gulab Sah
{"title":"用于 WMSN 相互验证和密钥协议的 PUF 与生理数据组合方法","authors":"Shanvendra Rai, Rituparna Paul, Subhasish Banerjee, Preetisudha Meher, Gulab Sah","doi":"10.1007/s10723-023-09731-5","DOIUrl":null,"url":null,"abstract":"<p>Wireless Medical Sensor Network (WMSN) is a kind of Ad-hoc Network that is used in the health sector to continuously monitor patients’ health conditions and provide instant medical services, over a distance. This network facilitates the transmission of real-time patient data, sensed by resource-constrained biosensors, to the end user through an open communication channel. Thus, any modification or alteration in such sensed physiological data leads to the wrong diagnosis which may put the life of the patient in danger. Therefore, among many challenges in WMSN, the security is most essential requirement that needs to be addressed. Hence, to maintain the security and privacy of sensitive medical data, this article proposed a lightweight mutual authentication and key agreement (AKA) scheme using Physical Unclonable Functions (PUFs) enabled sensor nodes. Moreover, to make the WMSN more secure and reliable, the physiological data like the electrocardiogram (ECG) of the patients are also considered. In order to establish its accuracy and security, the scheme undergoes validation through the Real or Random (RoR) Model and is further confirmed through simulation using the Automated Validation of Internet Security Protocols and Applications (AVISPA) tool. A thorough examination encompassing security, performance, and a comparative assessment with existing related schemes illustrates that the proposed scheme not only exhibits superior resistance to well-known attacks in comparison to others but also upholds a cost-effective strategy at the sensor node, specifically, a reduction of 35.71% in computational cost and 49.12% in communication cost.</p>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Combined Approach of PUF and Physiological Data for Mutual Authentication and Key Agreement in WMSN\",\"authors\":\"Shanvendra Rai, Rituparna Paul, Subhasish Banerjee, Preetisudha Meher, Gulab Sah\",\"doi\":\"10.1007/s10723-023-09731-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Wireless Medical Sensor Network (WMSN) is a kind of Ad-hoc Network that is used in the health sector to continuously monitor patients’ health conditions and provide instant medical services, over a distance. This network facilitates the transmission of real-time patient data, sensed by resource-constrained biosensors, to the end user through an open communication channel. Thus, any modification or alteration in such sensed physiological data leads to the wrong diagnosis which may put the life of the patient in danger. Therefore, among many challenges in WMSN, the security is most essential requirement that needs to be addressed. Hence, to maintain the security and privacy of sensitive medical data, this article proposed a lightweight mutual authentication and key agreement (AKA) scheme using Physical Unclonable Functions (PUFs) enabled sensor nodes. Moreover, to make the WMSN more secure and reliable, the physiological data like the electrocardiogram (ECG) of the patients are also considered. In order to establish its accuracy and security, the scheme undergoes validation through the Real or Random (RoR) Model and is further confirmed through simulation using the Automated Validation of Internet Security Protocols and Applications (AVISPA) tool. A thorough examination encompassing security, performance, and a comparative assessment with existing related schemes illustrates that the proposed scheme not only exhibits superior resistance to well-known attacks in comparison to others but also upholds a cost-effective strategy at the sensor node, specifically, a reduction of 35.71% in computational cost and 49.12% in communication cost.</p>\",\"PeriodicalId\":3,\"journal\":{\"name\":\"ACS Applied Electronic Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-02-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Electronic Materials\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s10723-023-09731-5\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s10723-023-09731-5","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

无线医疗传感器网络(WMSN)是一种特设网络,用于卫生部门持续监测病人的健康状况,并提供远距离即时医疗服务。该网络通过开放式通信渠道,将资源有限的生物传感器感测到的病人实时数据传输给终端用户。因此,对这些传感生理数据的任何修改或改动都会导致错误的诊断,从而危及病人的生命。因此,在 WMSN 面临的众多挑战中,安全性是需要解决的最基本要求。因此,为了维护敏感医疗数据的安全性和隐私性,本文提出了一种轻量级的相互验证和密钥协议(AKA)方案,该方案使用支持物理不可克隆函数(PUF)的传感器节点。此外,为了使 WMSN 更加安全可靠,还考虑了病人的心电图等生理数据。为了确定其准确性和安全性,该方案通过真实或随机(RoR)模型进行了验证,并通过使用互联网安全协议和应用自动验证(AVISPA)工具进行模拟来进一步确认。对安全性、性能以及与现有相关方案的比较评估等方面进行的全面检查表明,与其他方案相比,所提出的方案不仅能更好地抵御众所周知的攻击,而且还能在传感器节点上坚持一种具有成本效益的策略,具体来说,计算成本降低了 35.71%,通信成本降低了 49.12%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Combined Approach of PUF and Physiological Data for Mutual Authentication and Key Agreement in WMSN

Wireless Medical Sensor Network (WMSN) is a kind of Ad-hoc Network that is used in the health sector to continuously monitor patients’ health conditions and provide instant medical services, over a distance. This network facilitates the transmission of real-time patient data, sensed by resource-constrained biosensors, to the end user through an open communication channel. Thus, any modification or alteration in such sensed physiological data leads to the wrong diagnosis which may put the life of the patient in danger. Therefore, among many challenges in WMSN, the security is most essential requirement that needs to be addressed. Hence, to maintain the security and privacy of sensitive medical data, this article proposed a lightweight mutual authentication and key agreement (AKA) scheme using Physical Unclonable Functions (PUFs) enabled sensor nodes. Moreover, to make the WMSN more secure and reliable, the physiological data like the electrocardiogram (ECG) of the patients are also considered. In order to establish its accuracy and security, the scheme undergoes validation through the Real or Random (RoR) Model and is further confirmed through simulation using the Automated Validation of Internet Security Protocols and Applications (AVISPA) tool. A thorough examination encompassing security, performance, and a comparative assessment with existing related schemes illustrates that the proposed scheme not only exhibits superior resistance to well-known attacks in comparison to others but also upholds a cost-effective strategy at the sensor node, specifically, a reduction of 35.71% in computational cost and 49.12% in communication cost.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
期刊最新文献
Vitamin B12: prevention of human beings from lethal diseases and its food application. Current status and obstacles of narrowing yield gaps of four major crops. Cold shock treatment alleviates pitting in sweet cherry fruit by enhancing antioxidant enzymes activity and regulating membrane lipid metabolism. Removal of proteins and lipids affects structure, in vitro digestion and physicochemical properties of rice flour modified by heat-moisture treatment. Investigating the impact of climate variables on the organic honey yield in Turkey using XGBoost machine learning.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1