Tengfei Ma , Zihao Jiao , Haoran Qiu , Feng Wang, Ya Liu, Liejin Guo
{"title":"氧化铟上氧物种和空位对增强二氧化碳转化为甲酸盐的电化学作用的协同效应","authors":"Tengfei Ma , Zihao Jiao , Haoran Qiu , Feng Wang, Ya Liu, Liejin Guo","doi":"10.1016/j.esci.2024.100246","DOIUrl":null,"url":null,"abstract":"<div><p>Indium-based oxides are promising electrocatalysts for producing formate via CO<sub>2</sub> reduction reaction, in which ∗OCHO is considered the key intermediate. Here, we identified that the ∗COOH pathway could be preferential to produce formate on In<sub>2</sub>O<sub>3</sub> of In/In<sub>2</sub>O<sub>3</sub> heterojunction due to the synergistic effect of oxygen species and vacancy. Specifically, ∗CO<sub>2</sub> and ∗COOH were observed on In<sub>2</sub>O<sub>3</sub> and related to formate production by <em>in situ</em> Raman spectroscopy. The theoretical calculations further demonstrated that the energy barrier of the ∗COOH formation on In<sub>2</sub>O<sub>3</sub> was decreased in the presence of oxygen vacancy, similar to or lower than that of the ∗OCHO formation on the In surface. As a result, a formate selectivity of over 90% was obtained on prepared In/In<sub>2</sub>O<sub>3</sub> heterojunction with 343 ± 7 mA cm<sup>−2</sup> partial current density. Furthermore, when using a Si-based photovoltaic as an energy supplier, 10.11% solar–to–fuel energy efficiency was achieved.</p></div>","PeriodicalId":100489,"journal":{"name":"eScience","volume":"4 3","pages":"Article 100246"},"PeriodicalIF":42.9000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2667141724000259/pdfft?md5=b5d9ca7861e20f0d229e8e7010ee898c&pid=1-s2.0-S2667141724000259-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Synergistic effect of oxygen species and vacancy for enhanced electrochemical CO2 conversion to formate on indium oxide\",\"authors\":\"Tengfei Ma , Zihao Jiao , Haoran Qiu , Feng Wang, Ya Liu, Liejin Guo\",\"doi\":\"10.1016/j.esci.2024.100246\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Indium-based oxides are promising electrocatalysts for producing formate via CO<sub>2</sub> reduction reaction, in which ∗OCHO is considered the key intermediate. Here, we identified that the ∗COOH pathway could be preferential to produce formate on In<sub>2</sub>O<sub>3</sub> of In/In<sub>2</sub>O<sub>3</sub> heterojunction due to the synergistic effect of oxygen species and vacancy. Specifically, ∗CO<sub>2</sub> and ∗COOH were observed on In<sub>2</sub>O<sub>3</sub> and related to formate production by <em>in situ</em> Raman spectroscopy. The theoretical calculations further demonstrated that the energy barrier of the ∗COOH formation on In<sub>2</sub>O<sub>3</sub> was decreased in the presence of oxygen vacancy, similar to or lower than that of the ∗OCHO formation on the In surface. As a result, a formate selectivity of over 90% was obtained on prepared In/In<sub>2</sub>O<sub>3</sub> heterojunction with 343 ± 7 mA cm<sup>−2</sup> partial current density. Furthermore, when using a Si-based photovoltaic as an energy supplier, 10.11% solar–to–fuel energy efficiency was achieved.</p></div>\",\"PeriodicalId\":100489,\"journal\":{\"name\":\"eScience\",\"volume\":\"4 3\",\"pages\":\"Article 100246\"},\"PeriodicalIF\":42.9000,\"publicationDate\":\"2024-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2667141724000259/pdfft?md5=b5d9ca7861e20f0d229e8e7010ee898c&pid=1-s2.0-S2667141724000259-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"eScience\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2667141724000259\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ELECTROCHEMISTRY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"eScience","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667141724000259","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
Synergistic effect of oxygen species and vacancy for enhanced electrochemical CO2 conversion to formate on indium oxide
Indium-based oxides are promising electrocatalysts for producing formate via CO2 reduction reaction, in which ∗OCHO is considered the key intermediate. Here, we identified that the ∗COOH pathway could be preferential to produce formate on In2O3 of In/In2O3 heterojunction due to the synergistic effect of oxygen species and vacancy. Specifically, ∗CO2 and ∗COOH were observed on In2O3 and related to formate production by in situ Raman spectroscopy. The theoretical calculations further demonstrated that the energy barrier of the ∗COOH formation on In2O3 was decreased in the presence of oxygen vacancy, similar to or lower than that of the ∗OCHO formation on the In surface. As a result, a formate selectivity of over 90% was obtained on prepared In/In2O3 heterojunction with 343 ± 7 mA cm−2 partial current density. Furthermore, when using a Si-based photovoltaic as an energy supplier, 10.11% solar–to–fuel energy efficiency was achieved.