氧化铟上氧物种和空位对增强二氧化碳转化为甲酸盐的电化学作用的协同效应

IF 42.9 Q1 ELECTROCHEMISTRY eScience Pub Date : 2024-06-01 DOI:10.1016/j.esci.2024.100246
Tengfei Ma , Zihao Jiao , Haoran Qiu , Feng Wang, Ya Liu, Liejin Guo
{"title":"氧化铟上氧物种和空位对增强二氧化碳转化为甲酸盐的电化学作用的协同效应","authors":"Tengfei Ma ,&nbsp;Zihao Jiao ,&nbsp;Haoran Qiu ,&nbsp;Feng Wang,&nbsp;Ya Liu,&nbsp;Liejin Guo","doi":"10.1016/j.esci.2024.100246","DOIUrl":null,"url":null,"abstract":"<div><p>Indium-based oxides are promising electrocatalysts for producing formate via CO<sub>2</sub> reduction reaction, in which ∗OCHO is considered the key intermediate. Here, we identified that the ∗COOH pathway could be preferential to produce formate on In<sub>2</sub>O<sub>3</sub> of In/In<sub>2</sub>O<sub>3</sub> heterojunction due to the synergistic effect of oxygen species and vacancy. Specifically, ∗CO<sub>2</sub> and ∗COOH were observed on In<sub>2</sub>O<sub>3</sub> and related to formate production by <em>in situ</em> Raman spectroscopy. The theoretical calculations further demonstrated that the energy barrier of the ∗COOH formation on In<sub>2</sub>O<sub>3</sub> was decreased in the presence of oxygen vacancy, similar to or lower than that of the ∗OCHO formation on the In surface. As a result, a formate selectivity of over 90% was obtained on prepared In/In<sub>2</sub>O<sub>3</sub> heterojunction with 343 ​± ​7 ​mA ​cm<sup>−2</sup> partial current density. Furthermore, when using a Si-based photovoltaic as an energy supplier, 10.11% solar–to–fuel energy efficiency was achieved.</p></div>","PeriodicalId":100489,"journal":{"name":"eScience","volume":"4 3","pages":"Article 100246"},"PeriodicalIF":42.9000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2667141724000259/pdfft?md5=b5d9ca7861e20f0d229e8e7010ee898c&pid=1-s2.0-S2667141724000259-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Synergistic effect of oxygen species and vacancy for enhanced electrochemical CO2 conversion to formate on indium oxide\",\"authors\":\"Tengfei Ma ,&nbsp;Zihao Jiao ,&nbsp;Haoran Qiu ,&nbsp;Feng Wang,&nbsp;Ya Liu,&nbsp;Liejin Guo\",\"doi\":\"10.1016/j.esci.2024.100246\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Indium-based oxides are promising electrocatalysts for producing formate via CO<sub>2</sub> reduction reaction, in which ∗OCHO is considered the key intermediate. Here, we identified that the ∗COOH pathway could be preferential to produce formate on In<sub>2</sub>O<sub>3</sub> of In/In<sub>2</sub>O<sub>3</sub> heterojunction due to the synergistic effect of oxygen species and vacancy. Specifically, ∗CO<sub>2</sub> and ∗COOH were observed on In<sub>2</sub>O<sub>3</sub> and related to formate production by <em>in situ</em> Raman spectroscopy. The theoretical calculations further demonstrated that the energy barrier of the ∗COOH formation on In<sub>2</sub>O<sub>3</sub> was decreased in the presence of oxygen vacancy, similar to or lower than that of the ∗OCHO formation on the In surface. As a result, a formate selectivity of over 90% was obtained on prepared In/In<sub>2</sub>O<sub>3</sub> heterojunction with 343 ​± ​7 ​mA ​cm<sup>−2</sup> partial current density. Furthermore, when using a Si-based photovoltaic as an energy supplier, 10.11% solar–to–fuel energy efficiency was achieved.</p></div>\",\"PeriodicalId\":100489,\"journal\":{\"name\":\"eScience\",\"volume\":\"4 3\",\"pages\":\"Article 100246\"},\"PeriodicalIF\":42.9000,\"publicationDate\":\"2024-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2667141724000259/pdfft?md5=b5d9ca7861e20f0d229e8e7010ee898c&pid=1-s2.0-S2667141724000259-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"eScience\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2667141724000259\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ELECTROCHEMISTRY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"eScience","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667141724000259","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 0

摘要

铟基氧化物是一种很有前景的电催化剂,可通过二氧化碳还原反应生成甲酸盐,其中*OCHO 被认为是关键的中间产物。在这里,我们发现,由于氧物种和空位的协同作用,*COOH途径可能优先在In/In2O3异质结的In2O3上产生甲酸盐。具体来说,在 In2O3 上观察到了 *CO2 和 *COOH,并通过原位拉曼光谱分析了它们与甲酸盐生成的关系。理论计算进一步证明,在存在氧空位的情况下,In2O3 上形成 *COOH 的能垒降低,与 In 表面形成 *OCHO 的能垒相似或更低。因此,在制备的 In/In2O3 异质结上获得了超过 90% 的甲酸选择性,部分电流密度为 343 ± 7 mA cm-2。此外,当使用硅基光伏作为能源供应时,太阳能转化为燃料的效率达到了 10.11%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Synergistic effect of oxygen species and vacancy for enhanced electrochemical CO2 conversion to formate on indium oxide

Indium-based oxides are promising electrocatalysts for producing formate via CO2 reduction reaction, in which ∗OCHO is considered the key intermediate. Here, we identified that the ∗COOH pathway could be preferential to produce formate on In2O3 of In/In2O3 heterojunction due to the synergistic effect of oxygen species and vacancy. Specifically, ∗CO2 and ∗COOH were observed on In2O3 and related to formate production by in situ Raman spectroscopy. The theoretical calculations further demonstrated that the energy barrier of the ∗COOH formation on In2O3 was decreased in the presence of oxygen vacancy, similar to or lower than that of the ∗OCHO formation on the In surface. As a result, a formate selectivity of over 90% was obtained on prepared In/In2O3 heterojunction with 343 ​± ​7 ​mA ​cm−2 partial current density. Furthermore, when using a Si-based photovoltaic as an energy supplier, 10.11% solar–to–fuel energy efficiency was achieved.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
33.70
自引率
0.00%
发文量
0
期刊最新文献
Understanding synergistic catalysis on Pt–Cu diatomic sites via operando X-ray absorption spectroscopy in sulfur redox reactions Characteristics, materials, and performance of Ru-containing oxide cathode materials for rechargeable batteries Versatile carbon-based materials from biomass for advanced electrochemical energy storage systems Recent advances in flexible self-oscillating actuators Anodes for low-temperature rechargeable batteries
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1