无人机辅助移动边缘计算中及时处理数据流的流时最小化

IF 3.9 4区 计算机科学 Q2 COMPUTER SCIENCE, INFORMATION SYSTEMS ACM Transactions on Sensor Networks Pub Date : 2024-02-02 DOI:10.1145/3643813
Zichuan Xu, Haiyang Qiao, Weifa Liang, Zhou Xu, Qiufen Xia, Pan Zhou, Omer F. Rana, Wenzheng Xu
{"title":"无人机辅助移动边缘计算中及时处理数据流的流时最小化","authors":"Zichuan Xu, Haiyang Qiao, Weifa Liang, Zhou Xu, Qiufen Xia, Pan Zhou, Omer F. Rana, Wenzheng Xu","doi":"10.1145/3643813","DOIUrl":null,"url":null,"abstract":"<p>Unmanned Aerial Vehicle (UAV) has gained increasing attentions by both academic and industrial communities, due to its flexible deployment and efficient line-of-sight communication. Recently, UAVs equipped with base stations have been envisioned as a key technology to provide 5G network services for mobile users. In this paper, we provide timely services on the data streams of mobile users in a UAV-aided Mobile Edge Computing (MEC) network, in which each UAV is equipped with a 5G small-cell base station for communication and data processing. Specifically, we first formulate a flow-time minimization problem by jointly caching services and offloading tasks of mobile users to the UAV-aided MEC with the aim to minimize the flow-time, where the flow-time of a user request is referred to the time duration from the request issuing time point to its completion point, subject to resource and energy capacity on each UAV. We then propose a spatial-temporal learning optimization framework. We also devise an online algorithm with a competitive ratio for the problem based upon the framework, by leveraging the round-robin scheduling and dual fitting techniques. Finally, we evaluate the performance of the proposed algorithms through experimental simulation. The simulation results demonstrated that the proposed algorithms outperform their comparison counterparts, by reducing the flow-time no less than 19% on average.</p>","PeriodicalId":50910,"journal":{"name":"ACM Transactions on Sensor Networks","volume":"2 1","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2024-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Flow-Time Minimization for Timely Data Stream Processing in UAV-Aided Mobile Edge Computing\",\"authors\":\"Zichuan Xu, Haiyang Qiao, Weifa Liang, Zhou Xu, Qiufen Xia, Pan Zhou, Omer F. Rana, Wenzheng Xu\",\"doi\":\"10.1145/3643813\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Unmanned Aerial Vehicle (UAV) has gained increasing attentions by both academic and industrial communities, due to its flexible deployment and efficient line-of-sight communication. Recently, UAVs equipped with base stations have been envisioned as a key technology to provide 5G network services for mobile users. In this paper, we provide timely services on the data streams of mobile users in a UAV-aided Mobile Edge Computing (MEC) network, in which each UAV is equipped with a 5G small-cell base station for communication and data processing. Specifically, we first formulate a flow-time minimization problem by jointly caching services and offloading tasks of mobile users to the UAV-aided MEC with the aim to minimize the flow-time, where the flow-time of a user request is referred to the time duration from the request issuing time point to its completion point, subject to resource and energy capacity on each UAV. We then propose a spatial-temporal learning optimization framework. We also devise an online algorithm with a competitive ratio for the problem based upon the framework, by leveraging the round-robin scheduling and dual fitting techniques. Finally, we evaluate the performance of the proposed algorithms through experimental simulation. The simulation results demonstrated that the proposed algorithms outperform their comparison counterparts, by reducing the flow-time no less than 19% on average.</p>\",\"PeriodicalId\":50910,\"journal\":{\"name\":\"ACM Transactions on Sensor Networks\",\"volume\":\"2 1\",\"pages\":\"\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2024-02-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Sensor Networks\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1145/3643813\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Sensor Networks","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/3643813","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

无人飞行器(UAV)因其灵活的部署和高效的视距通信,越来越受到学术界和工业界的关注。最近,配备基站的无人机被认为是为移动用户提供 5G 网络服务的关键技术。在本文中,我们将在无人机辅助的移动边缘计算(MEC)网络中为移动用户的数据流提供及时服务,在该网络中,每架无人机都配备了一个 5G 小蜂窝基站,用于通信和数据处理。具体来说,我们首先提出了一个流量时间最小化问题,即在每个无人机的资源和能源容量允许的情况下,将移动用户的服务缓存和任务卸载到无人机辅助的 MEC,以实现流量时间最小化。然后,我们提出了一个时空学习优化框架。在此框架的基础上,我们还利用轮循调度和二元拟合技术设计了一种具有竞争比的在线算法。最后,我们通过实验仿真评估了所提算法的性能。仿真结果表明,所提出的算法平均缩短了不少于 19% 的流量时间,优于其他同类算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Flow-Time Minimization for Timely Data Stream Processing in UAV-Aided Mobile Edge Computing

Unmanned Aerial Vehicle (UAV) has gained increasing attentions by both academic and industrial communities, due to its flexible deployment and efficient line-of-sight communication. Recently, UAVs equipped with base stations have been envisioned as a key technology to provide 5G network services for mobile users. In this paper, we provide timely services on the data streams of mobile users in a UAV-aided Mobile Edge Computing (MEC) network, in which each UAV is equipped with a 5G small-cell base station for communication and data processing. Specifically, we first formulate a flow-time minimization problem by jointly caching services and offloading tasks of mobile users to the UAV-aided MEC with the aim to minimize the flow-time, where the flow-time of a user request is referred to the time duration from the request issuing time point to its completion point, subject to resource and energy capacity on each UAV. We then propose a spatial-temporal learning optimization framework. We also devise an online algorithm with a competitive ratio for the problem based upon the framework, by leveraging the round-robin scheduling and dual fitting techniques. Finally, we evaluate the performance of the proposed algorithms through experimental simulation. The simulation results demonstrated that the proposed algorithms outperform their comparison counterparts, by reducing the flow-time no less than 19% on average.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACM Transactions on Sensor Networks
ACM Transactions on Sensor Networks 工程技术-电信学
CiteScore
5.90
自引率
7.30%
发文量
131
审稿时长
6 months
期刊介绍: ACM Transactions on Sensor Networks (TOSN) is a central publication by the ACM in the interdisciplinary area of sensor networks spanning a broad discipline from signal processing, networking and protocols, embedded systems, information management, to distributed algorithms. It covers research contributions that introduce new concepts, techniques, analyses, or architectures, as well as applied contributions that report on development of new tools and systems or experiences and experiments with high-impact, innovative applications. The Transactions places special attention on contributions to systemic approaches to sensor networks as well as fundamental contributions.
期刊最新文献
Fair and Robust Federated Learning via Decentralized and Adaptive Aggregation based on Blockchain PnA: Robust Aggregation Against Poisoning Attacks to Federated Learning for Edge Intelligence HCCNet: Hybrid Coupled Cooperative Network for Robust Indoor Localization HDM-GNN: A Heterogeneous Dynamic Multi-view Graph Neural Network for Crime Prediction A DRL-based Partial Charging Algorithm for Wireless Rechargeable Sensor Networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1