San1 泛素连接酶在热应激诱导的核孔复合体非原生 Nup1 降解中的作用。

IF 3.3 3区 生物学 Genetics Pub Date : 2024-02-01 DOI:10.1093/genetics/iyae017
Takanari Ikeda, Kenji Yamazaki, Fumihiko Okumura, Takumi Kamura, Kunio Nakatsukasa
{"title":"San1 泛素连接酶在热应激诱导的核孔复合体非原生 Nup1 降解中的作用。","authors":"Takanari Ikeda, Kenji Yamazaki, Fumihiko Okumura, Takumi Kamura, Kunio Nakatsukasa","doi":"10.1093/genetics/iyae017","DOIUrl":null,"url":null,"abstract":"The nuclear pore complex (NPC) mediates the selective exchange of macromolecules between the nucleus and the cytoplasm. Neurodegenerative diseases such as amyotrophic lateral sclerosis are characterized by mislocalization of nucleoporins (Nups), transport receptors, and Ras-related nuclear proteins into nucleoplasmic or cytosolic aggregates, underscoring the importance of precise assembly of the NPC. The assembly state of large protein complexes is strictly monitored by the protein quality control system. The ubiquitin-proteasome system may eliminate aberrant, misfolded, and/or orphan components; however, the involvement of the ubiquitin-proteasome system in the degradation of non-native Nups in the NPC remains unclear. Here, we show that in Saccharomyces cerevisiae, although Nup1 (the FG-nucleoporin component of the central core of the NPC) was stable, C-terminally green fluorescent protein (GFP)-tagged Nup1, which had been incorporated into the NPC, was degraded by the proteasome especially under heat stress conditions. The degradation was dependent on the San1 ubiquitin ligase and Cdc48/p97, as well as its cofactor Doa1. We also demonstrate that San1 weakly but certainly contributes to the degradation of non-tagged endogenous Nup1 in cells defective in NPC biogenesis by the deletion of NUP120. In addition, the overexpression of SAN1 exacerbated the growth defect phenotype of nup120Δ cells, which may be caused by excess degradation of defective Nups due to the deletion of NUP120. These biochemical and genetic data suggest that San1 is involved in the degradation of non-native nucleoporins generated by genetic mutation or when NPC biogenesis is impaired.","PeriodicalId":12706,"journal":{"name":"Genetics","volume":"11 1","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Role of the San1 ubiquitin ligase in the heat stress-induced degradation of non-native Nup1 in the nuclear pore complex.\",\"authors\":\"Takanari Ikeda, Kenji Yamazaki, Fumihiko Okumura, Takumi Kamura, Kunio Nakatsukasa\",\"doi\":\"10.1093/genetics/iyae017\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The nuclear pore complex (NPC) mediates the selective exchange of macromolecules between the nucleus and the cytoplasm. Neurodegenerative diseases such as amyotrophic lateral sclerosis are characterized by mislocalization of nucleoporins (Nups), transport receptors, and Ras-related nuclear proteins into nucleoplasmic or cytosolic aggregates, underscoring the importance of precise assembly of the NPC. The assembly state of large protein complexes is strictly monitored by the protein quality control system. The ubiquitin-proteasome system may eliminate aberrant, misfolded, and/or orphan components; however, the involvement of the ubiquitin-proteasome system in the degradation of non-native Nups in the NPC remains unclear. Here, we show that in Saccharomyces cerevisiae, although Nup1 (the FG-nucleoporin component of the central core of the NPC) was stable, C-terminally green fluorescent protein (GFP)-tagged Nup1, which had been incorporated into the NPC, was degraded by the proteasome especially under heat stress conditions. The degradation was dependent on the San1 ubiquitin ligase and Cdc48/p97, as well as its cofactor Doa1. We also demonstrate that San1 weakly but certainly contributes to the degradation of non-tagged endogenous Nup1 in cells defective in NPC biogenesis by the deletion of NUP120. In addition, the overexpression of SAN1 exacerbated the growth defect phenotype of nup120Δ cells, which may be caused by excess degradation of defective Nups due to the deletion of NUP120. These biochemical and genetic data suggest that San1 is involved in the degradation of non-native nucleoporins generated by genetic mutation or when NPC biogenesis is impaired.\",\"PeriodicalId\":12706,\"journal\":{\"name\":\"Genetics\",\"volume\":\"11 1\",\"pages\":\"\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2024-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Genetics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/genetics/iyae017\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genetics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/genetics/iyae017","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

核孔复合体(NPC)介导细胞核与细胞质之间大分子的选择性交换。神经退行性疾病(如肌萎缩性脊髓侧索硬化症)的特征是核多聚酶(Nups)、转运受体和 Ras 相关核蛋白错位到核质或细胞质聚集体中,这凸显了核孔复合体精确组装的重要性。大型蛋白质复合物的组装状态受到蛋白质质量控制系统的严格监控。泛素-蛋白酶体系统可消除异常、折叠错误和/或孤儿成分;然而,泛素-蛋白酶体系统参与降解NPC中的非原生Nups的情况仍不清楚。在这里,我们发现在酿酒酵母(Saccharomyces cerevisiae)中,尽管Nup1(NPC中央核心的FG-核蛋白成分)是稳定的,但已并入NPC的C端绿色荧光蛋白(GFP)标记的Nup1会被蛋白酶体降解,尤其是在热应激条件下。这种降解依赖于 San1 泛素连接酶、Cdc48/p97 及其辅助因子 Doa1。我们还证明,在因缺失 NUP120 而导致 NPC 生物发生缺陷的细胞中,San1 对非标记内源 Nup1 的降解有微弱但肯定的作用。此外,SAN1的过表达加剧了nup120Δ细胞的生长缺陷表型,这可能是由于NUP120的缺失导致了缺陷Nups的过度降解。这些生化和遗传数据表明,San1 参与了因基因突变或 NPC 生物发生受损而产生的非本地核蛋白的降解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Role of the San1 ubiquitin ligase in the heat stress-induced degradation of non-native Nup1 in the nuclear pore complex.
The nuclear pore complex (NPC) mediates the selective exchange of macromolecules between the nucleus and the cytoplasm. Neurodegenerative diseases such as amyotrophic lateral sclerosis are characterized by mislocalization of nucleoporins (Nups), transport receptors, and Ras-related nuclear proteins into nucleoplasmic or cytosolic aggregates, underscoring the importance of precise assembly of the NPC. The assembly state of large protein complexes is strictly monitored by the protein quality control system. The ubiquitin-proteasome system may eliminate aberrant, misfolded, and/or orphan components; however, the involvement of the ubiquitin-proteasome system in the degradation of non-native Nups in the NPC remains unclear. Here, we show that in Saccharomyces cerevisiae, although Nup1 (the FG-nucleoporin component of the central core of the NPC) was stable, C-terminally green fluorescent protein (GFP)-tagged Nup1, which had been incorporated into the NPC, was degraded by the proteasome especially under heat stress conditions. The degradation was dependent on the San1 ubiquitin ligase and Cdc48/p97, as well as its cofactor Doa1. We also demonstrate that San1 weakly but certainly contributes to the degradation of non-tagged endogenous Nup1 in cells defective in NPC biogenesis by the deletion of NUP120. In addition, the overexpression of SAN1 exacerbated the growth defect phenotype of nup120Δ cells, which may be caused by excess degradation of defective Nups due to the deletion of NUP120. These biochemical and genetic data suggest that San1 is involved in the degradation of non-native nucleoporins generated by genetic mutation or when NPC biogenesis is impaired.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Genetics
Genetics 生物-遗传学
CiteScore
6.20
自引率
6.10%
发文量
177
期刊介绍: GENETICS is published by the Genetics Society of America, a scholarly society that seeks to deepen our understanding of the living world by advancing our understanding of genetics. Since 1916, GENETICS has published high-quality, original research presenting novel findings bearing on genetics and genomics. The journal publishes empirical studies of organisms ranging from microbes to humans, as well as theoretical work. While it has an illustrious history, GENETICS has changed along with the communities it serves: it is not your mentor''s journal. The editors make decisions quickly – in around 30 days – without sacrificing the excellence and scholarship for which the journal has long been known. GENETICS is a peer reviewed, peer-edited journal, with an international reach and increasing visibility and impact. All editorial decisions are made through collaboration of at least two editors who are practicing scientists. GENETICS is constantly innovating: expanded types of content include Reviews, Commentary (current issues of interest to geneticists), Perspectives (historical), Primers (to introduce primary literature into the classroom), Toolbox Reviews, plus YeastBook, FlyBook, and WormBook (coming spring 2016). For particularly time-sensitive results, we publish Communications. As part of our mission to serve our communities, we''ve published thematic collections, including Genomic Selection, Multiparental Populations, Mouse Collaborative Cross, and the Genetics of Sex.
期刊最新文献
The structural role of Skp1 in the synaptonemal complex is conserved in nematodes. Interaction between ESCRT-III proteins and the yeast SERINC homolog Tms1. Role of male gonad-enriched microRNAs in sperm production in C. elegans. Trait Imputation Enhances Nonlinear Genetic Prediction for Some Traits. Robust and heritable knockdown of gene expression using a self-cleaving ribozyme in Drosophila.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1