FedEYE:可扩展、灵活的端到端眼科联合学习平台

IF 6.7 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Patterns Pub Date : 2024-02-02 DOI:10.1016/j.patter.2024.100928
Bingjie Yan, Danmin Cao, Xinlong Jiang, Yiqiang Chen, Weiwei Dai, Fan Dong, Wuliang Huang, Teng Zhang, Chenlong Gao, Qian Chen, Zhen Yan, Zhirui Wang
{"title":"FedEYE:可扩展、灵活的端到端眼科联合学习平台","authors":"Bingjie Yan, Danmin Cao, Xinlong Jiang, Yiqiang Chen, Weiwei Dai, Fan Dong, Wuliang Huang, Teng Zhang, Chenlong Gao, Qian Chen, Zhen Yan, Zhirui Wang","doi":"10.1016/j.patter.2024.100928","DOIUrl":null,"url":null,"abstract":"<p>Data-driven machine learning, as a promising approach, possesses the capability to build high-quality, exact, and robust models from ophthalmic medical data. Ophthalmic medical data, however, presently exist across disparate data silos with privacy limitations, making centralized training challenging. While ophthalmologists may not specialize in machine learning and artificial intelligence (AI), considerable impediments arise in the associated realm of research. To address these issues, we design and develop FedEYE, a scalable and flexible end-to-end ophthalmic federated learning platform. During FedEYE design, we adhere to four fundamental design principles, ensuring that ophthalmologists can effortlessly create independent and federated AI research tasks. Benefiting from the design principles and architecture of FedEYE, it encloses numerous key features, including rich and customizable capabilities, separation of concerns, scalability, and flexible deployment. We also validated the applicability of FedEYE by employing several prevalent neural networks on ophthalmic disease image classification tasks.</p>","PeriodicalId":36242,"journal":{"name":"Patterns","volume":"16 1","pages":""},"PeriodicalIF":6.7000,"publicationDate":"2024-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"FedEYE: A scalable and flexible end-to-end federated learning platform for ophthalmology\",\"authors\":\"Bingjie Yan, Danmin Cao, Xinlong Jiang, Yiqiang Chen, Weiwei Dai, Fan Dong, Wuliang Huang, Teng Zhang, Chenlong Gao, Qian Chen, Zhen Yan, Zhirui Wang\",\"doi\":\"10.1016/j.patter.2024.100928\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Data-driven machine learning, as a promising approach, possesses the capability to build high-quality, exact, and robust models from ophthalmic medical data. Ophthalmic medical data, however, presently exist across disparate data silos with privacy limitations, making centralized training challenging. While ophthalmologists may not specialize in machine learning and artificial intelligence (AI), considerable impediments arise in the associated realm of research. To address these issues, we design and develop FedEYE, a scalable and flexible end-to-end ophthalmic federated learning platform. During FedEYE design, we adhere to four fundamental design principles, ensuring that ophthalmologists can effortlessly create independent and federated AI research tasks. Benefiting from the design principles and architecture of FedEYE, it encloses numerous key features, including rich and customizable capabilities, separation of concerns, scalability, and flexible deployment. We also validated the applicability of FedEYE by employing several prevalent neural networks on ophthalmic disease image classification tasks.</p>\",\"PeriodicalId\":36242,\"journal\":{\"name\":\"Patterns\",\"volume\":\"16 1\",\"pages\":\"\"},\"PeriodicalIF\":6.7000,\"publicationDate\":\"2024-02-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Patterns\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1016/j.patter.2024.100928\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Patterns","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.patter.2024.100928","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

数据驱动的机器学习作为一种前景广阔的方法,有能力从眼科医疗数据中建立高质量、精确和稳健的模型。然而,眼科医疗数据目前存在于不同的数据孤岛中,存在隐私限制,这使得集中培训具有挑战性。虽然眼科医生可能并不擅长机器学习和人工智能(AI),但在相关的研究领域却存在相当大的障碍。为了解决这些问题,我们设计并开发了一个可扩展、灵活的端到端眼科联合学习平台 FedEYE。在 FedEYE 的设计过程中,我们坚持四项基本设计原则,确保眼科医生能够轻松创建独立的联合人工智能研究任务。得益于 FedEYE 的设计原则和架构,它拥有众多关键功能,包括丰富的可定制功能、关注点分离、可扩展性和灵活部署。我们还在眼科疾病图像分类任务中使用了几种流行的神经网络,从而验证了 FedEYE 的适用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
FedEYE: A scalable and flexible end-to-end federated learning platform for ophthalmology

Data-driven machine learning, as a promising approach, possesses the capability to build high-quality, exact, and robust models from ophthalmic medical data. Ophthalmic medical data, however, presently exist across disparate data silos with privacy limitations, making centralized training challenging. While ophthalmologists may not specialize in machine learning and artificial intelligence (AI), considerable impediments arise in the associated realm of research. To address these issues, we design and develop FedEYE, a scalable and flexible end-to-end ophthalmic federated learning platform. During FedEYE design, we adhere to four fundamental design principles, ensuring that ophthalmologists can effortlessly create independent and federated AI research tasks. Benefiting from the design principles and architecture of FedEYE, it encloses numerous key features, including rich and customizable capabilities, separation of concerns, scalability, and flexible deployment. We also validated the applicability of FedEYE by employing several prevalent neural networks on ophthalmic disease image classification tasks.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Patterns
Patterns Decision Sciences-Decision Sciences (all)
CiteScore
10.60
自引率
4.60%
发文量
153
审稿时长
19 weeks
期刊介绍:
期刊最新文献
Data-knowledge co-driven innovations in engineering and management. Integration of large language models and federated learning. Decorrelative network architecture for robust electrocardiogram classification. Best holdout assessment is sufficient for cancer transcriptomic model selection. The recent Physics and Chemistry Nobel Prizes, AI, and the convergence of knowledge fields.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1