Ziliang Wei;Han Wang;Dongming Li;Mang I Vai;Sio Hang Pun;Jiejie Yang;Min Du;Yueming Gao
{"title":"无引线起搏器心内通信的时变等效电路建模和测量方法","authors":"Ziliang Wei;Han Wang;Dongming Li;Mang I Vai;Sio Hang Pun;Jiejie Yang;Min Du;Yueming Gao","doi":"10.1109/TBCAS.2024.3360997","DOIUrl":null,"url":null,"abstract":"Intracardiac wireless communication is crucial for the development of multi-chamber leadless cardiac pacemakers (LCP). However, the time-varying characteristics of intracardiac channel pose major challenges. As such, mastering the dynamic conduction properties of the intracardiac channel and modeling the equivalent time-varying channel are imperative for realizing LCP multi-chamber pacing. In this article, we present a limiting volume variational approach based on the electrical properties of cardiac tissues and trends in chamber volume variation. This approach was used to establish a quasi-static and a continuous time-varying equivalent circuit model of an intracardiac channel. An equivalence analysis was conducted on the model, and a discrete time-varying equivalent circuit phantom grounded on the cardiac cycle was subsequently established. Moreover, an ex vivo cardiac experimental platform was developed for verification. Results indicate that in the frequency domain, the congruence between phantom and ex vivo experimental outcomes is as high as 94.3%, affirming the reliability of the equivalent circuit model. In the time domain, the correlation is up to 75.3%, corroborating its effectiveness. The proposed time-varying equivalent circuit model exhibits stable and standardized dynamic attributes, serving as a powerful tool for addressing time-varying challenges and simplifying in vivo or ex vivo experiments.","PeriodicalId":94031,"journal":{"name":"IEEE transactions on biomedical circuits and systems","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Time-Varying Equivalent Circuit Modeling and Measuring Approach for Intracardiac Communication in Leadless Pacemakers\",\"authors\":\"Ziliang Wei;Han Wang;Dongming Li;Mang I Vai;Sio Hang Pun;Jiejie Yang;Min Du;Yueming Gao\",\"doi\":\"10.1109/TBCAS.2024.3360997\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Intracardiac wireless communication is crucial for the development of multi-chamber leadless cardiac pacemakers (LCP). However, the time-varying characteristics of intracardiac channel pose major challenges. As such, mastering the dynamic conduction properties of the intracardiac channel and modeling the equivalent time-varying channel are imperative for realizing LCP multi-chamber pacing. In this article, we present a limiting volume variational approach based on the electrical properties of cardiac tissues and trends in chamber volume variation. This approach was used to establish a quasi-static and a continuous time-varying equivalent circuit model of an intracardiac channel. An equivalence analysis was conducted on the model, and a discrete time-varying equivalent circuit phantom grounded on the cardiac cycle was subsequently established. Moreover, an ex vivo cardiac experimental platform was developed for verification. Results indicate that in the frequency domain, the congruence between phantom and ex vivo experimental outcomes is as high as 94.3%, affirming the reliability of the equivalent circuit model. In the time domain, the correlation is up to 75.3%, corroborating its effectiveness. The proposed time-varying equivalent circuit model exhibits stable and standardized dynamic attributes, serving as a powerful tool for addressing time-varying challenges and simplifying in vivo or ex vivo experiments.\",\"PeriodicalId\":94031,\"journal\":{\"name\":\"IEEE transactions on biomedical circuits and systems\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE transactions on biomedical circuits and systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10418516/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on biomedical circuits and systems","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10418516/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Time-Varying Equivalent Circuit Modeling and Measuring Approach for Intracardiac Communication in Leadless Pacemakers
Intracardiac wireless communication is crucial for the development of multi-chamber leadless cardiac pacemakers (LCP). However, the time-varying characteristics of intracardiac channel pose major challenges. As such, mastering the dynamic conduction properties of the intracardiac channel and modeling the equivalent time-varying channel are imperative for realizing LCP multi-chamber pacing. In this article, we present a limiting volume variational approach based on the electrical properties of cardiac tissues and trends in chamber volume variation. This approach was used to establish a quasi-static and a continuous time-varying equivalent circuit model of an intracardiac channel. An equivalence analysis was conducted on the model, and a discrete time-varying equivalent circuit phantom grounded on the cardiac cycle was subsequently established. Moreover, an ex vivo cardiac experimental platform was developed for verification. Results indicate that in the frequency domain, the congruence between phantom and ex vivo experimental outcomes is as high as 94.3%, affirming the reliability of the equivalent circuit model. In the time domain, the correlation is up to 75.3%, corroborating its effectiveness. The proposed time-varying equivalent circuit model exhibits stable and standardized dynamic attributes, serving as a powerful tool for addressing time-varying challenges and simplifying in vivo or ex vivo experiments.