Chongguang Wang , Kerrie Evans , Dean Hartley , Scott Morrison , Martin Veidt , Gui Wang
{"title":"用于分析足底压力的人工神经网络技术系统综述","authors":"Chongguang Wang , Kerrie Evans , Dean Hartley , Scott Morrison , Martin Veidt , Gui Wang","doi":"10.1016/j.bbe.2024.01.005","DOIUrl":null,"url":null,"abstract":"<div><p>Plantar pressure distribution offers insights into foot function, gait mechanics, and foot-related issues. This systematic review presents an analysis of the use of artificial neural network techniques in the context of plantar pressure analysis. 60 studies were included in the review. Sample size, pathology, pressure sensor number, data collection device, utilization of other sensor devices, ground-truth methods, pre-processing dataset, neural network type, and evaluation metrics were evaluated. Utilization of customized wearable footwear devices for the acquisition of data was common amongst both healthy participants and patients. Inertial measurement units emerged as an effective compensatory measure to address the limitations associated with the distribution of plantar pressure. Ground truth methods predominantly relied on the usage of both annotations and reference devices. Multilayer perceptron, convolutional neural networks, and recurrent neural networks were identified as the most frequently employed artificial neural network algorithms across the reviewed studies. Finally, the evaluation of performance largely drew upon statistical descriptions and other machine learning methods. This review provides a comprehensive understanding of the use of artificial neural network techniques in plantar pressure analysis, highlighting opportunities for future research.</p></div>","PeriodicalId":55381,"journal":{"name":"Biocybernetics and Biomedical Engineering","volume":"44 1","pages":"Pages 197-208"},"PeriodicalIF":5.3000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0208521624000056/pdfft?md5=9b7f95a54d7af9620bb2a34de80b906f&pid=1-s2.0-S0208521624000056-main.pdf","citationCount":"0","resultStr":"{\"title\":\"A systematic review of artificial neural network techniques for analysis of foot plantar pressure\",\"authors\":\"Chongguang Wang , Kerrie Evans , Dean Hartley , Scott Morrison , Martin Veidt , Gui Wang\",\"doi\":\"10.1016/j.bbe.2024.01.005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Plantar pressure distribution offers insights into foot function, gait mechanics, and foot-related issues. This systematic review presents an analysis of the use of artificial neural network techniques in the context of plantar pressure analysis. 60 studies were included in the review. Sample size, pathology, pressure sensor number, data collection device, utilization of other sensor devices, ground-truth methods, pre-processing dataset, neural network type, and evaluation metrics were evaluated. Utilization of customized wearable footwear devices for the acquisition of data was common amongst both healthy participants and patients. Inertial measurement units emerged as an effective compensatory measure to address the limitations associated with the distribution of plantar pressure. Ground truth methods predominantly relied on the usage of both annotations and reference devices. Multilayer perceptron, convolutional neural networks, and recurrent neural networks were identified as the most frequently employed artificial neural network algorithms across the reviewed studies. Finally, the evaluation of performance largely drew upon statistical descriptions and other machine learning methods. This review provides a comprehensive understanding of the use of artificial neural network techniques in plantar pressure analysis, highlighting opportunities for future research.</p></div>\",\"PeriodicalId\":55381,\"journal\":{\"name\":\"Biocybernetics and Biomedical Engineering\",\"volume\":\"44 1\",\"pages\":\"Pages 197-208\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0208521624000056/pdfft?md5=9b7f95a54d7af9620bb2a34de80b906f&pid=1-s2.0-S0208521624000056-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biocybernetics and Biomedical Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0208521624000056\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biocybernetics and Biomedical Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0208521624000056","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
A systematic review of artificial neural network techniques for analysis of foot plantar pressure
Plantar pressure distribution offers insights into foot function, gait mechanics, and foot-related issues. This systematic review presents an analysis of the use of artificial neural network techniques in the context of plantar pressure analysis. 60 studies were included in the review. Sample size, pathology, pressure sensor number, data collection device, utilization of other sensor devices, ground-truth methods, pre-processing dataset, neural network type, and evaluation metrics were evaluated. Utilization of customized wearable footwear devices for the acquisition of data was common amongst both healthy participants and patients. Inertial measurement units emerged as an effective compensatory measure to address the limitations associated with the distribution of plantar pressure. Ground truth methods predominantly relied on the usage of both annotations and reference devices. Multilayer perceptron, convolutional neural networks, and recurrent neural networks were identified as the most frequently employed artificial neural network algorithms across the reviewed studies. Finally, the evaluation of performance largely drew upon statistical descriptions and other machine learning methods. This review provides a comprehensive understanding of the use of artificial neural network techniques in plantar pressure analysis, highlighting opportunities for future research.
期刊介绍:
Biocybernetics and Biomedical Engineering is a quarterly journal, founded in 1981, devoted to publishing the results of original, innovative and creative research investigations in the field of Biocybernetics and biomedical engineering, which bridges mathematical, physical, chemical and engineering methods and technology to analyse physiological processes in living organisms as well as to develop methods, devices and systems used in biology and medicine, mainly in medical diagnosis, monitoring systems and therapy. The Journal''s mission is to advance scientific discovery into new or improved standards of care, and promotion a wide-ranging exchange between science and its application to humans.