基于强化学习的压电驱动纳米定位系统自适应控制

IF 5.2 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC IEEE Open Journal of the Industrial Electronics Society Pub Date : 2024-01-17 DOI:10.1109/OJIES.2024.3355192
Liheng Chen;Qingsong Xu
{"title":"基于强化学习的压电驱动纳米定位系统自适应控制","authors":"Liheng Chen;Qingsong Xu","doi":"10.1109/OJIES.2024.3355192","DOIUrl":null,"url":null,"abstract":"This article proposes a new reinforcement learning (RL)-based adaptive control design for precision motion control of a two-degree-of-freedom piezoelectric XY nanopositioning system. In this design, an actor-critic structure is developed to eliminate the effects of uncertain nonlinearities and cross-coupling motion between the two working axes. Then, an adaptive parameter adjustment mechanism is designed to optimize the control performance without a priori knowledge of the unknown perturbations. The effectiveness and superiority of the proposed method are verified by performing simulation and experimental studies. The results show that the proposed RL-based adaptive control method provides a better robust performance and smaller tracking error for the nanopositioning system.","PeriodicalId":52675,"journal":{"name":"IEEE Open Journal of the Industrial Electronics Society","volume":"5 ","pages":"28-40"},"PeriodicalIF":5.2000,"publicationDate":"2024-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10402007","citationCount":"0","resultStr":"{\"title\":\"Reinforcement Learning-Based Adaptive Control of a Piezo-Driven Nanopositioning System\",\"authors\":\"Liheng Chen;Qingsong Xu\",\"doi\":\"10.1109/OJIES.2024.3355192\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article proposes a new reinforcement learning (RL)-based adaptive control design for precision motion control of a two-degree-of-freedom piezoelectric XY nanopositioning system. In this design, an actor-critic structure is developed to eliminate the effects of uncertain nonlinearities and cross-coupling motion between the two working axes. Then, an adaptive parameter adjustment mechanism is designed to optimize the control performance without a priori knowledge of the unknown perturbations. The effectiveness and superiority of the proposed method are verified by performing simulation and experimental studies. The results show that the proposed RL-based adaptive control method provides a better robust performance and smaller tracking error for the nanopositioning system.\",\"PeriodicalId\":52675,\"journal\":{\"name\":\"IEEE Open Journal of the Industrial Electronics Society\",\"volume\":\"5 \",\"pages\":\"28-40\"},\"PeriodicalIF\":5.2000,\"publicationDate\":\"2024-01-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10402007\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Open Journal of the Industrial Electronics Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10402007/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Open Journal of the Industrial Electronics Society","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10402007/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种新的基于强化学习(RL)的自适应控制设计,用于两自由度压电 XY 纳米定位系统的精确运动控制。在该设计中,开发了一种行为批判结构,以消除不确定非线性和两个工作轴之间交叉耦合运动的影响。然后,设计了一种自适应参数调整机制,以便在不预先知道未知扰动的情况下优化控制性能。通过仿真和实验研究,验证了所提方法的有效性和优越性。结果表明,所提出的基于 RL 的自适应控制方法为纳米定位系统提供了更好的鲁棒性能和更小的跟踪误差。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Reinforcement Learning-Based Adaptive Control of a Piezo-Driven Nanopositioning System
This article proposes a new reinforcement learning (RL)-based adaptive control design for precision motion control of a two-degree-of-freedom piezoelectric XY nanopositioning system. In this design, an actor-critic structure is developed to eliminate the effects of uncertain nonlinearities and cross-coupling motion between the two working axes. Then, an adaptive parameter adjustment mechanism is designed to optimize the control performance without a priori knowledge of the unknown perturbations. The effectiveness and superiority of the proposed method are verified by performing simulation and experimental studies. The results show that the proposed RL-based adaptive control method provides a better robust performance and smaller tracking error for the nanopositioning system.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Open Journal of the Industrial Electronics Society
IEEE Open Journal of the Industrial Electronics Society ENGINEERING, ELECTRICAL & ELECTRONIC-
CiteScore
10.80
自引率
2.40%
发文量
33
审稿时长
12 weeks
期刊介绍: The IEEE Open Journal of the Industrial Electronics Society is dedicated to advancing information-intensive, knowledge-based automation, and digitalization, aiming to enhance various industrial and infrastructural ecosystems including energy, mobility, health, and home/building infrastructure. Encompassing a range of techniques leveraging data and information acquisition, analysis, manipulation, and distribution, the journal strives to achieve greater flexibility, efficiency, effectiveness, reliability, and security within digitalized and networked environments. Our scope provides a platform for discourse and dissemination of the latest developments in numerous research and innovation areas. These include electrical components and systems, smart grids, industrial cyber-physical systems, motion control, robotics and mechatronics, sensors and actuators, factory and building communication and automation, industrial digitalization, flexible and reconfigurable manufacturing, assistant systems, industrial applications of artificial intelligence and data science, as well as the implementation of machine learning, artificial neural networks, and fuzzy logic. Additionally, we explore human factors in digitalized and networked ecosystems. Join us in exploring and shaping the future of industrial electronics and digitalization.
期刊最新文献
Short-Term Control of Heat Pumps to Support Power Grid Operation Effects of Grid Voltage and Load Unbalances on the Efficiency of a Hybrid Distribution Transformer Enhanced PI Control Based SHC-PWM Strategy for Active Power Filters A Detailed Study on Algorithms for Predictive Maintenance in Smart Manufacturing: Chip Form Classification Using Edge Machine Learning Design and Evaluation of a Voice-Controlled Elevator System to Improve the Safety and Accessibility
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1