Fangzheng Li;Dandan Liu;Le Gao;Bingyang Cai;Lujia Yang;Yuan Wang;Chun Zhao;Wenjie Wu;Liangcheng Tu
{"title":"在纳米重力微机电系统加速度计中同时实现位移传导和力平衡的新型面积变化电容方法","authors":"Fangzheng Li;Dandan Liu;Le Gao;Bingyang Cai;Lujia Yang;Yuan Wang;Chun Zhao;Wenjie Wu;Liangcheng Tu","doi":"10.1109/JMEMS.2023.3334297","DOIUrl":null,"url":null,"abstract":"High-precision MEMS accelerometers with nano-g resolution are emergent instruments for geophysical applications and proved their competence in terms of functionality. The electromagnetic actuator, which serves as an auxiliary component in nano-g MEMS accelerometers for improving the dynamic response, faces the challenges of process incompatibility, temperature sensitivity, and large form factor. Thereby, this paper proposes an area-changed capacitive method for both displacement transducing and force balance in a nano-g MEMS accelerometer, aiming to address those posed challenges and provide favourable performance. Thanks to the allowed large displacement range in the sensitive direction of the proposed device, the area-changed capacitive mechanism is able to be integrated with a highly-sensitive quasi-zero stiffness spring-mass structure. As a result, the fabricated force-balance MEMS accelerometer attains a calibrated self-noise of 1.3 ng/\n<inline-formula> <tex-math>$\\surd $ </tex-math></inline-formula>\nHz, which is one of the most sensitive MEMS-based accelerometers reported to date. The settling time, on the other hand, is reduced to 0.5 s with the electrostatic closed-loop control featuring the proposed subject, compared to 15.7 s in the open-loop configuration. In addition, the critical acceleration input at the boundary of the “pull-in” is calculated as 5.4 g, which is adaptable to most geophysical applications. This work is of considerable potential in geophysical applications such as earthquake monitoring or gravity measurements, and promising a high-performance closed-loop MEMS accelerometer. [2023-0161]","PeriodicalId":16621,"journal":{"name":"Journal of Microelectromechanical Systems","volume":"33 1","pages":"12-20"},"PeriodicalIF":2.5000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Novel Area-Changed Capacitive Methods for Simultaneous Displacement Transducing and Force Balance in a Nano-g MEMS Accelerometer\",\"authors\":\"Fangzheng Li;Dandan Liu;Le Gao;Bingyang Cai;Lujia Yang;Yuan Wang;Chun Zhao;Wenjie Wu;Liangcheng Tu\",\"doi\":\"10.1109/JMEMS.2023.3334297\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"High-precision MEMS accelerometers with nano-g resolution are emergent instruments for geophysical applications and proved their competence in terms of functionality. The electromagnetic actuator, which serves as an auxiliary component in nano-g MEMS accelerometers for improving the dynamic response, faces the challenges of process incompatibility, temperature sensitivity, and large form factor. Thereby, this paper proposes an area-changed capacitive method for both displacement transducing and force balance in a nano-g MEMS accelerometer, aiming to address those posed challenges and provide favourable performance. Thanks to the allowed large displacement range in the sensitive direction of the proposed device, the area-changed capacitive mechanism is able to be integrated with a highly-sensitive quasi-zero stiffness spring-mass structure. As a result, the fabricated force-balance MEMS accelerometer attains a calibrated self-noise of 1.3 ng/\\n<inline-formula> <tex-math>$\\\\surd $ </tex-math></inline-formula>\\nHz, which is one of the most sensitive MEMS-based accelerometers reported to date. The settling time, on the other hand, is reduced to 0.5 s with the electrostatic closed-loop control featuring the proposed subject, compared to 15.7 s in the open-loop configuration. In addition, the critical acceleration input at the boundary of the “pull-in” is calculated as 5.4 g, which is adaptable to most geophysical applications. This work is of considerable potential in geophysical applications such as earthquake monitoring or gravity measurements, and promising a high-performance closed-loop MEMS accelerometer. [2023-0161]\",\"PeriodicalId\":16621,\"journal\":{\"name\":\"Journal of Microelectromechanical Systems\",\"volume\":\"33 1\",\"pages\":\"12-20\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2023-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Microelectromechanical Systems\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10339177/\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Microelectromechanical Systems","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10339177/","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Novel Area-Changed Capacitive Methods for Simultaneous Displacement Transducing and Force Balance in a Nano-g MEMS Accelerometer
High-precision MEMS accelerometers with nano-g resolution are emergent instruments for geophysical applications and proved their competence in terms of functionality. The electromagnetic actuator, which serves as an auxiliary component in nano-g MEMS accelerometers for improving the dynamic response, faces the challenges of process incompatibility, temperature sensitivity, and large form factor. Thereby, this paper proposes an area-changed capacitive method for both displacement transducing and force balance in a nano-g MEMS accelerometer, aiming to address those posed challenges and provide favourable performance. Thanks to the allowed large displacement range in the sensitive direction of the proposed device, the area-changed capacitive mechanism is able to be integrated with a highly-sensitive quasi-zero stiffness spring-mass structure. As a result, the fabricated force-balance MEMS accelerometer attains a calibrated self-noise of 1.3 ng/
$\surd $
Hz, which is one of the most sensitive MEMS-based accelerometers reported to date. The settling time, on the other hand, is reduced to 0.5 s with the electrostatic closed-loop control featuring the proposed subject, compared to 15.7 s in the open-loop configuration. In addition, the critical acceleration input at the boundary of the “pull-in” is calculated as 5.4 g, which is adaptable to most geophysical applications. This work is of considerable potential in geophysical applications such as earthquake monitoring or gravity measurements, and promising a high-performance closed-loop MEMS accelerometer. [2023-0161]
期刊介绍:
The topics of interest include, but are not limited to: devices ranging in size from microns to millimeters, IC-compatible fabrication techniques, other fabrication techniques, measurement of micro phenomena, theoretical results, new materials and designs, micro actuators, micro robots, micro batteries, bearings, wear, reliability, electrical interconnections, micro telemanipulation, and standards appropriate to MEMS. Application examples and application oriented devices in fluidics, optics, bio-medical engineering, etc., are also of central interest.