Weitao Jiang, Fengbing Pan, Ran Chen, Lefen Song, Lei Qin, Xin Xu, Zihui Xu, Li Xiang, Xuesen Chen, Chengmiao Yin, Yanfang Wang, Zhiquan Mao
{"title":"蚯蚓发酵产品可改善苹果移栽地的土壤环境,提高苹果果实的产量和质量","authors":"Weitao Jiang, Fengbing Pan, Ran Chen, Lefen Song, Lei Qin, Xin Xu, Zihui Xu, Li Xiang, Xuesen Chen, Chengmiao Yin, Yanfang Wang, Zhiquan Mao","doi":"10.1016/j.hpj.2023.11.004","DOIUrl":null,"url":null,"abstract":"<p>The cultivation of apples in replanted orchards is essential given limitations in land resources. However, the presence of <em>Fusarium</em> and phenolic acids in the replanted soil harms the soil environment, which impedes the sustainable development of the apple industry. In this study, earthworm was used as the fermentation precursor protein to optimize the fermentation conditions, and the inhibition mechanism of the fermentation product on Fusarium and its potential to repair the apple replant soil environment were explored. Laboratory experiments showed that the optimum initial pH, temperature and time of earthworm fermentation were 7, 37 °C and 10 d, respectively. The inhibition rates of earthworm fermentation products against <em>F. oxysporum</em>, <em>F. solani</em>, <em>F. proliferatum</em>, and <em>F. moniliforme</em> were 79.8%, 75.1%, 78.7% and 79.2%, respectively. The inhibition rates of spore germination on F. oxysporum, <em>F. solani</em>, <em>F. proliferatum</em>, and <em>F. moniliforme</em> were 83.8%, 87.3%, 83.2% and 84.8%, respectively. In the field, use 300 mL of earthworm fermentation products for each planting pits before planting. The experimental results showed that, compared with the control, the content of soil pathogenic <em>Fusarium</em> and phenolic acid in Wantou (W3) were decreased by 75.1% and 59.8%, respectively, after treatment with earthworm fermentation products in 2019. Soil urease, phosphatase, sucrase and catalase activities increased by 383.2%, 78.2%, 130.3% and 43.5%, respectively. The fruit weight, anthocyanin content, soluble sugar, sugar-acid ratio, total ester ratio, total ester concentration and yield increased by 80.7%, 60.6%, 25.6%, 50.3%, 19.7%, 262.4% and 193.5%, respectively, while titratable acid content decreased by 16.9%. In conclusion, earthworm fermentation products can be used as a sustainable amendment to control apple replant disease.</p>","PeriodicalId":13178,"journal":{"name":"Horticultural Plant Journal","volume":null,"pages":null},"PeriodicalIF":5.7000,"publicationDate":"2024-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Earthworm fermentation products enhance the apple replant soil environment and increase the yield and quality of apple fruit\",\"authors\":\"Weitao Jiang, Fengbing Pan, Ran Chen, Lefen Song, Lei Qin, Xin Xu, Zihui Xu, Li Xiang, Xuesen Chen, Chengmiao Yin, Yanfang Wang, Zhiquan Mao\",\"doi\":\"10.1016/j.hpj.2023.11.004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The cultivation of apples in replanted orchards is essential given limitations in land resources. However, the presence of <em>Fusarium</em> and phenolic acids in the replanted soil harms the soil environment, which impedes the sustainable development of the apple industry. In this study, earthworm was used as the fermentation precursor protein to optimize the fermentation conditions, and the inhibition mechanism of the fermentation product on Fusarium and its potential to repair the apple replant soil environment were explored. Laboratory experiments showed that the optimum initial pH, temperature and time of earthworm fermentation were 7, 37 °C and 10 d, respectively. The inhibition rates of earthworm fermentation products against <em>F. oxysporum</em>, <em>F. solani</em>, <em>F. proliferatum</em>, and <em>F. moniliforme</em> were 79.8%, 75.1%, 78.7% and 79.2%, respectively. The inhibition rates of spore germination on F. oxysporum, <em>F. solani</em>, <em>F. proliferatum</em>, and <em>F. moniliforme</em> were 83.8%, 87.3%, 83.2% and 84.8%, respectively. In the field, use 300 mL of earthworm fermentation products for each planting pits before planting. The experimental results showed that, compared with the control, the content of soil pathogenic <em>Fusarium</em> and phenolic acid in Wantou (W3) were decreased by 75.1% and 59.8%, respectively, after treatment with earthworm fermentation products in 2019. Soil urease, phosphatase, sucrase and catalase activities increased by 383.2%, 78.2%, 130.3% and 43.5%, respectively. The fruit weight, anthocyanin content, soluble sugar, sugar-acid ratio, total ester ratio, total ester concentration and yield increased by 80.7%, 60.6%, 25.6%, 50.3%, 19.7%, 262.4% and 193.5%, respectively, while titratable acid content decreased by 16.9%. In conclusion, earthworm fermentation products can be used as a sustainable amendment to control apple replant disease.</p>\",\"PeriodicalId\":13178,\"journal\":{\"name\":\"Horticultural Plant Journal\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.7000,\"publicationDate\":\"2024-02-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Horticultural Plant Journal\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1016/j.hpj.2023.11.004\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"HORTICULTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Horticultural Plant Journal","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1016/j.hpj.2023.11.004","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"HORTICULTURE","Score":null,"Total":0}
Earthworm fermentation products enhance the apple replant soil environment and increase the yield and quality of apple fruit
The cultivation of apples in replanted orchards is essential given limitations in land resources. However, the presence of Fusarium and phenolic acids in the replanted soil harms the soil environment, which impedes the sustainable development of the apple industry. In this study, earthworm was used as the fermentation precursor protein to optimize the fermentation conditions, and the inhibition mechanism of the fermentation product on Fusarium and its potential to repair the apple replant soil environment were explored. Laboratory experiments showed that the optimum initial pH, temperature and time of earthworm fermentation were 7, 37 °C and 10 d, respectively. The inhibition rates of earthworm fermentation products against F. oxysporum, F. solani, F. proliferatum, and F. moniliforme were 79.8%, 75.1%, 78.7% and 79.2%, respectively. The inhibition rates of spore germination on F. oxysporum, F. solani, F. proliferatum, and F. moniliforme were 83.8%, 87.3%, 83.2% and 84.8%, respectively. In the field, use 300 mL of earthworm fermentation products for each planting pits before planting. The experimental results showed that, compared with the control, the content of soil pathogenic Fusarium and phenolic acid in Wantou (W3) were decreased by 75.1% and 59.8%, respectively, after treatment with earthworm fermentation products in 2019. Soil urease, phosphatase, sucrase and catalase activities increased by 383.2%, 78.2%, 130.3% and 43.5%, respectively. The fruit weight, anthocyanin content, soluble sugar, sugar-acid ratio, total ester ratio, total ester concentration and yield increased by 80.7%, 60.6%, 25.6%, 50.3%, 19.7%, 262.4% and 193.5%, respectively, while titratable acid content decreased by 16.9%. In conclusion, earthworm fermentation products can be used as a sustainable amendment to control apple replant disease.
期刊介绍:
Horticultural Plant Journal (HPJ) is an OPEN ACCESS international journal. HPJ publishes research related to all horticultural plants, including fruits, vegetables, ornamental plants, tea plants, and medicinal plants, etc. The journal covers all aspects of horticultural crop sciences, including germplasm resources, genetics and breeding, tillage and cultivation, physiology and biochemistry, ecology, genomics, biotechnology, plant protection, postharvest processing, etc. Article types include Original research papers, Reviews, and Short communications.