Michael R. Dyer , Zhenghan Jing , Kathleen Duncan , Jacqueline Godbe , Monica Shokeen
{"title":"开发用于治疗骨转移瘤的核医学放射性药物的进展情况","authors":"Michael R. Dyer , Zhenghan Jing , Kathleen Duncan , Jacqueline Godbe , Monica Shokeen","doi":"10.1016/j.nucmedbio.2024.108879","DOIUrl":null,"url":null,"abstract":"<div><p>Bone metastases are a painful and complex condition that overwhelmingly impacts the prognosis and quality of life of cancer patients. Over the years, nuclear medicine has made remarkable progress in the diagnosis and management of bone metastases. This review aims to provide a comprehensive overview of the recent advancements in nuclear medicine for the diagnosis and management of bone metastases. Furthermore, the review explores the role of targeted radiopharmaceuticals in nuclear medicine for bone metastases, focusing on radiolabeled molecules that are designed to selectively target biomarkers associated with bone metastases, including osteocytes, osteoblasts, and metastatic cells. The applications of radionuclide-based therapies, such as strontium-89 (Sr-89) and radium-223 (Ra-223), are also discussed. This review also highlights the potential of theranostic approaches for bone metastases, enabling personalized treatment strategies based on individual patient characteristics. Importantly, the clinical applications and outcomes of nuclear medicine in osseous metastatic disease are discussed. This includes the assessment of treatment response, predictive and prognostic value of imaging biomarkers, and the impact of nuclear medicine on patient management and outcomes. The review identifies current challenges and future perspectives on the role of nuclear medicine in treating bone metastases. It addresses limitations in imaging resolution, radiotracer availability, radiation safety, and the need for standardized protocols. The review concludes by emphasizing the need for further research and advancements in imaging technology, radiopharmaceutical development, and integration of nuclear medicine with other treatment modalities. In summary, advancements in nuclear medicine have significantly improved the diagnosis and management of osseous metastatic disease and future developements in the integration of innovative imaging modalities, targeted radiopharmaceuticals, radionuclide production, theranostic approaches, and advanced image analysis techniques hold great promise in improving patient outcomes and enhancing personalized care for individuals with bone metastases.</p></div>","PeriodicalId":19363,"journal":{"name":"Nuclear medicine and biology","volume":"130 ","pages":"Article 108879"},"PeriodicalIF":3.6000,"publicationDate":"2024-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Advancements in the development of radiopharmaceuticals for nuclear medicine applications in the treatment of bone metastases\",\"authors\":\"Michael R. Dyer , Zhenghan Jing , Kathleen Duncan , Jacqueline Godbe , Monica Shokeen\",\"doi\":\"10.1016/j.nucmedbio.2024.108879\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Bone metastases are a painful and complex condition that overwhelmingly impacts the prognosis and quality of life of cancer patients. Over the years, nuclear medicine has made remarkable progress in the diagnosis and management of bone metastases. This review aims to provide a comprehensive overview of the recent advancements in nuclear medicine for the diagnosis and management of bone metastases. Furthermore, the review explores the role of targeted radiopharmaceuticals in nuclear medicine for bone metastases, focusing on radiolabeled molecules that are designed to selectively target biomarkers associated with bone metastases, including osteocytes, osteoblasts, and metastatic cells. The applications of radionuclide-based therapies, such as strontium-89 (Sr-89) and radium-223 (Ra-223), are also discussed. This review also highlights the potential of theranostic approaches for bone metastases, enabling personalized treatment strategies based on individual patient characteristics. Importantly, the clinical applications and outcomes of nuclear medicine in osseous metastatic disease are discussed. This includes the assessment of treatment response, predictive and prognostic value of imaging biomarkers, and the impact of nuclear medicine on patient management and outcomes. The review identifies current challenges and future perspectives on the role of nuclear medicine in treating bone metastases. It addresses limitations in imaging resolution, radiotracer availability, radiation safety, and the need for standardized protocols. The review concludes by emphasizing the need for further research and advancements in imaging technology, radiopharmaceutical development, and integration of nuclear medicine with other treatment modalities. In summary, advancements in nuclear medicine have significantly improved the diagnosis and management of osseous metastatic disease and future developements in the integration of innovative imaging modalities, targeted radiopharmaceuticals, radionuclide production, theranostic approaches, and advanced image analysis techniques hold great promise in improving patient outcomes and enhancing personalized care for individuals with bone metastases.</p></div>\",\"PeriodicalId\":19363,\"journal\":{\"name\":\"Nuclear medicine and biology\",\"volume\":\"130 \",\"pages\":\"Article 108879\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2024-02-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nuclear medicine and biology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0969805124000052\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nuclear medicine and biology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0969805124000052","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
Advancements in the development of radiopharmaceuticals for nuclear medicine applications in the treatment of bone metastases
Bone metastases are a painful and complex condition that overwhelmingly impacts the prognosis and quality of life of cancer patients. Over the years, nuclear medicine has made remarkable progress in the diagnosis and management of bone metastases. This review aims to provide a comprehensive overview of the recent advancements in nuclear medicine for the diagnosis and management of bone metastases. Furthermore, the review explores the role of targeted radiopharmaceuticals in nuclear medicine for bone metastases, focusing on radiolabeled molecules that are designed to selectively target biomarkers associated with bone metastases, including osteocytes, osteoblasts, and metastatic cells. The applications of radionuclide-based therapies, such as strontium-89 (Sr-89) and radium-223 (Ra-223), are also discussed. This review also highlights the potential of theranostic approaches for bone metastases, enabling personalized treatment strategies based on individual patient characteristics. Importantly, the clinical applications and outcomes of nuclear medicine in osseous metastatic disease are discussed. This includes the assessment of treatment response, predictive and prognostic value of imaging biomarkers, and the impact of nuclear medicine on patient management and outcomes. The review identifies current challenges and future perspectives on the role of nuclear medicine in treating bone metastases. It addresses limitations in imaging resolution, radiotracer availability, radiation safety, and the need for standardized protocols. The review concludes by emphasizing the need for further research and advancements in imaging technology, radiopharmaceutical development, and integration of nuclear medicine with other treatment modalities. In summary, advancements in nuclear medicine have significantly improved the diagnosis and management of osseous metastatic disease and future developements in the integration of innovative imaging modalities, targeted radiopharmaceuticals, radionuclide production, theranostic approaches, and advanced image analysis techniques hold great promise in improving patient outcomes and enhancing personalized care for individuals with bone metastases.
期刊介绍:
Nuclear Medicine and Biology publishes original research addressing all aspects of radiopharmaceutical science: synthesis, in vitro and ex vivo studies, in vivo biodistribution by dissection or imaging, radiopharmacology, radiopharmacy, and translational clinical studies of new targeted radiotracers. The importance of the target to an unmet clinical need should be the first consideration. If the synthesis of a new radiopharmaceutical is submitted without in vitro or in vivo data, then the uniqueness of the chemistry must be emphasized.
These multidisciplinary studies should validate the mechanism of localization whether the probe is based on binding to a receptor, enzyme, tumor antigen, or another well-defined target. The studies should be aimed at evaluating how the chemical and radiopharmaceutical properties affect pharmacokinetics, pharmacodynamics, or therapeutic efficacy. Ideally, the study would address the sensitivity of the probe to changes in disease or treatment, although studies validating mechanism alone are acceptable. Radiopharmacy practice, addressing the issues of preparation, automation, quality control, dispensing, and regulations applicable to qualification and administration of radiopharmaceuticals to humans, is an important aspect of the developmental process, but only if the study has a significant impact on the field.
Contributions on the subject of therapeutic radiopharmaceuticals also are appropriate provided that the specificity of labeled compound localization and therapeutic effect have been addressed.