水耦合系数对红砂岩试样爆破效果的影响

IF 6.9 1区 工程技术 Q2 ENERGY & FUELS International Journal of Coal Science & Technology Pub Date : 2024-02-04 DOI:10.1007/s40789-023-00620-6
Yang Li, Renshu Yang, Yanbing Wang, Dairui Fu
{"title":"水耦合系数对红砂岩试样爆破效果的影响","authors":"Yang Li, Renshu Yang, Yanbing Wang, Dairui Fu","doi":"10.1007/s40789-023-00620-6","DOIUrl":null,"url":null,"abstract":"<p>This study investigates the impact of different water coupling coefficients on the blasting effect of red sandstone. The analysis is based on the theories of detonation wave and elastic wave, focusing on the variation in wall pressure of the blasting holes. Using DDNP explosive as the explosive load, blasting tests were conducted on red sandstone specimens with four different water coupling coefficients: 1.20, 1.33, 1.50, and 2.00. The study examines the morphologies of the rock specimens after blasting under these different water coupling coefficients. Additionally, the fractal dimensions of the surface cracks resulting from the blasting were calculated to provide a quantitative evaluation of the extent of rock damage. CT scanning and 3D reconstruction were performed on the post-blasting specimens to visually depict the extent of damage and fractures within the rock. Additionally, the volume fractal dimension and damage degree of the post-blasting specimens are calculated. The findings are then combined with numerical simulation to facilitate auxiliary analysis. The results demonstrate that an increase in the water coupling coefficient leads to a reduction in the peak pressure on the hole wall and the crushing zone, enabling more of the explosion energy to be utilized for crack propagation following the explosion. The specimens exhibited distinct failure patterns, resulting in corresponding changes in fractal dimensions. The simulated pore wall pressure–time curve validated the derived theoretical results, whereas the stress cloud map and explosion energy-time curve demonstrated the buffering effect of the water medium. As the water coupling coefficient increases, the buffering effect of the water medium becomes increasingly prominent.</p>","PeriodicalId":53469,"journal":{"name":"International Journal of Coal Science & Technology","volume":null,"pages":null},"PeriodicalIF":6.9000,"publicationDate":"2024-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Influence of water coupling coefficient on the blasting effect of red sandstone specimens\",\"authors\":\"Yang Li, Renshu Yang, Yanbing Wang, Dairui Fu\",\"doi\":\"10.1007/s40789-023-00620-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This study investigates the impact of different water coupling coefficients on the blasting effect of red sandstone. The analysis is based on the theories of detonation wave and elastic wave, focusing on the variation in wall pressure of the blasting holes. Using DDNP explosive as the explosive load, blasting tests were conducted on red sandstone specimens with four different water coupling coefficients: 1.20, 1.33, 1.50, and 2.00. The study examines the morphologies of the rock specimens after blasting under these different water coupling coefficients. Additionally, the fractal dimensions of the surface cracks resulting from the blasting were calculated to provide a quantitative evaluation of the extent of rock damage. CT scanning and 3D reconstruction were performed on the post-blasting specimens to visually depict the extent of damage and fractures within the rock. Additionally, the volume fractal dimension and damage degree of the post-blasting specimens are calculated. The findings are then combined with numerical simulation to facilitate auxiliary analysis. The results demonstrate that an increase in the water coupling coefficient leads to a reduction in the peak pressure on the hole wall and the crushing zone, enabling more of the explosion energy to be utilized for crack propagation following the explosion. The specimens exhibited distinct failure patterns, resulting in corresponding changes in fractal dimensions. The simulated pore wall pressure–time curve validated the derived theoretical results, whereas the stress cloud map and explosion energy-time curve demonstrated the buffering effect of the water medium. As the water coupling coefficient increases, the buffering effect of the water medium becomes increasingly prominent.</p>\",\"PeriodicalId\":53469,\"journal\":{\"name\":\"International Journal of Coal Science & Technology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":6.9000,\"publicationDate\":\"2024-02-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Coal Science & Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s40789-023-00620-6\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Coal Science & Technology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s40789-023-00620-6","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

本研究探讨了不同水耦合系数对红砂岩爆破效果的影响。分析基于起爆波和弹性波理论,重点关注爆破孔壁压力的变化。以 DDNP 炸药为爆破载荷,对四种不同水耦合系数的红砂岩试样进行了爆破试验:1.20、1.33、1.50 和 2.00。研究考察了在这些不同水耦合系数下爆破后岩石试样的形态。此外,还计算了爆破产生的表面裂缝的分形尺寸,以便对岩石的破坏程度进行定量评估。对爆破后的试样进行了 CT 扫描和三维重建,以直观地描述岩石的损坏程度和裂缝情况。此外,还计算了爆破后试样的体积分形维度和损伤程度。然后将研究结果与数值模拟相结合,以便进行辅助分析。结果表明,水耦合系数的增加会导致孔壁和破碎区的峰值压力降低,从而使更多的爆炸能量被用于爆炸后的裂纹扩展。试样表现出不同的破坏模式,导致分形尺寸发生相应变化。模拟孔壁压力-时间曲线验证了推导出的理论结果,而应力云图和爆炸能量-时间曲线则证明了水介质的缓冲作用。随着水耦合系数的增加,水介质的缓冲作用越来越突出。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Influence of water coupling coefficient on the blasting effect of red sandstone specimens

This study investigates the impact of different water coupling coefficients on the blasting effect of red sandstone. The analysis is based on the theories of detonation wave and elastic wave, focusing on the variation in wall pressure of the blasting holes. Using DDNP explosive as the explosive load, blasting tests were conducted on red sandstone specimens with four different water coupling coefficients: 1.20, 1.33, 1.50, and 2.00. The study examines the morphologies of the rock specimens after blasting under these different water coupling coefficients. Additionally, the fractal dimensions of the surface cracks resulting from the blasting were calculated to provide a quantitative evaluation of the extent of rock damage. CT scanning and 3D reconstruction were performed on the post-blasting specimens to visually depict the extent of damage and fractures within the rock. Additionally, the volume fractal dimension and damage degree of the post-blasting specimens are calculated. The findings are then combined with numerical simulation to facilitate auxiliary analysis. The results demonstrate that an increase in the water coupling coefficient leads to a reduction in the peak pressure on the hole wall and the crushing zone, enabling more of the explosion energy to be utilized for crack propagation following the explosion. The specimens exhibited distinct failure patterns, resulting in corresponding changes in fractal dimensions. The simulated pore wall pressure–time curve validated the derived theoretical results, whereas the stress cloud map and explosion energy-time curve demonstrated the buffering effect of the water medium. As the water coupling coefficient increases, the buffering effect of the water medium becomes increasingly prominent.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
11.40
自引率
8.40%
发文量
678
审稿时长
12 weeks
期刊介绍: The International Journal of Coal Science & Technology is a peer-reviewed open access journal that focuses on key topics of coal scientific research and mining development. It serves as a forum for scientists to present research findings and discuss challenging issues in the field. The journal covers a range of topics including coal geology, geochemistry, geophysics, mineralogy, and petrology. It also covers coal mining theory, technology, and engineering, as well as coal processing, utilization, and conversion. Additionally, the journal explores coal mining environment and reclamation, along with related aspects. The International Journal of Coal Science & Technology is published with China Coal Society, who also cover the publication costs. This means that authors do not need to pay an article-processing charge.
期刊最新文献
Coal ash resources and potential for rare earth element production in the United States Ecological environment quality assessment of coal mining cities based on GEE platform: A case study of Shuozhou, China Study on signal characteristics of burst tendency coal under different loading rates Image-based quantitative probing of 3D heterogeneous pore structure in CBM reservoir and permeability estimation with pore network modeling Spectral signatures of solvent-extracted macromolecules in Indian coals of different rank: Insights from fluorescence excitation-emission matrix
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1