三维卷积神经网络发现阿尔茨海默病亚健康评分的特定模式脑成像预测因子

Q1 Computer Science Brain Informatics Pub Date : 2024-02-04 DOI:10.1186/s40708-024-00218-x
Kaida Ning, Pascale B. Cannon, Jiawei Yu, Srinesh Shenoi, Lu Wang, Joydeep Sarkar
{"title":"三维卷积神经网络发现阿尔茨海默病亚健康评分的特定模式脑成像预测因子","authors":"Kaida Ning, Pascale B. Cannon, Jiawei Yu, Srinesh Shenoi, Lu Wang, Joydeep Sarkar","doi":"10.1186/s40708-024-00218-x","DOIUrl":null,"url":null,"abstract":"Different aspects of cognitive functions are affected in patients with Alzheimer’s disease. To date, little is known about the associations between features from brain-imaging and individual Alzheimer’s disease (AD)-related cognitive functional changes. In addition, how these associations differ among different imaging modalities is unclear. Here, we trained and investigated 3D convolutional neural network (CNN) models that predicted sub-scores of the 13-item Alzheimer’s Disease Assessment Scale–Cognitive Subscale (ADAS–Cog13) based on MRI and FDG–PET brain-imaging data. Analysis of the trained network showed that each key ADAS–Cog13 sub-score was associated with a specific set of brain features within an imaging modality. Furthermore, different association patterns were observed in MRI and FDG–PET modalities. According to MRI, cognitive sub-scores were typically associated with structural changes of subcortical regions, including amygdala, hippocampus, and putamen. Comparatively, according to FDG–PET, cognitive functions were typically associated with metabolic changes of cortical regions, including the cingulated gyrus, occipital cortex, middle front gyrus, precuneus cortex, and the cerebellum. These findings brought insights into complex AD etiology and emphasized the importance of investigating different brain-imaging modalities.","PeriodicalId":37465,"journal":{"name":"Brain Informatics","volume":"40 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"3D convolutional neural networks uncover modality-specific brain-imaging predictors for Alzheimer’s disease sub-scores\",\"authors\":\"Kaida Ning, Pascale B. Cannon, Jiawei Yu, Srinesh Shenoi, Lu Wang, Joydeep Sarkar\",\"doi\":\"10.1186/s40708-024-00218-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Different aspects of cognitive functions are affected in patients with Alzheimer’s disease. To date, little is known about the associations between features from brain-imaging and individual Alzheimer’s disease (AD)-related cognitive functional changes. In addition, how these associations differ among different imaging modalities is unclear. Here, we trained and investigated 3D convolutional neural network (CNN) models that predicted sub-scores of the 13-item Alzheimer’s Disease Assessment Scale–Cognitive Subscale (ADAS–Cog13) based on MRI and FDG–PET brain-imaging data. Analysis of the trained network showed that each key ADAS–Cog13 sub-score was associated with a specific set of brain features within an imaging modality. Furthermore, different association patterns were observed in MRI and FDG–PET modalities. According to MRI, cognitive sub-scores were typically associated with structural changes of subcortical regions, including amygdala, hippocampus, and putamen. Comparatively, according to FDG–PET, cognitive functions were typically associated with metabolic changes of cortical regions, including the cingulated gyrus, occipital cortex, middle front gyrus, precuneus cortex, and the cerebellum. These findings brought insights into complex AD etiology and emphasized the importance of investigating different brain-imaging modalities.\",\"PeriodicalId\":37465,\"journal\":{\"name\":\"Brain Informatics\",\"volume\":\"40 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-02-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Brain Informatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1186/s40708-024-00218-x\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brain Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s40708-024-00218-x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 0

摘要

阿尔茨海默病患者的认知功能会受到不同方面的影响。迄今为止,人们对脑成像特征与阿尔茨海默病(AD)相关认知功能变化之间的关联知之甚少。此外,不同成像模式之间的关联有何不同也不清楚。在此,我们训练并研究了三维卷积神经网络(CNN)模型,该模型可根据核磁共振成像和 FDG-PET 脑成像数据预测 13 项阿尔茨海默病评估量表-认知分量表(ADAS-Cog13)的子分数。对训练网络的分析表明,ADAS-Cog13 的每个关键分值都与成像模式中的一组特定大脑特征相关联。此外,在核磁共振成像和 FDG-PET 模式中观察到了不同的关联模式。核磁共振成像显示,认知分值通常与皮层下区域的结构变化有关,包括杏仁核、海马和普坦。相比之下,根据FDG-PET,认知功能通常与皮质区域的代谢变化有关,包括扣带回、枕叶皮质、前中回、楔前皮质和小脑。这些发现为复杂的注意力缺失症病因学提供了见解,并强调了研究不同脑成像模式的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
3D convolutional neural networks uncover modality-specific brain-imaging predictors for Alzheimer’s disease sub-scores
Different aspects of cognitive functions are affected in patients with Alzheimer’s disease. To date, little is known about the associations between features from brain-imaging and individual Alzheimer’s disease (AD)-related cognitive functional changes. In addition, how these associations differ among different imaging modalities is unclear. Here, we trained and investigated 3D convolutional neural network (CNN) models that predicted sub-scores of the 13-item Alzheimer’s Disease Assessment Scale–Cognitive Subscale (ADAS–Cog13) based on MRI and FDG–PET brain-imaging data. Analysis of the trained network showed that each key ADAS–Cog13 sub-score was associated with a specific set of brain features within an imaging modality. Furthermore, different association patterns were observed in MRI and FDG–PET modalities. According to MRI, cognitive sub-scores were typically associated with structural changes of subcortical regions, including amygdala, hippocampus, and putamen. Comparatively, according to FDG–PET, cognitive functions were typically associated with metabolic changes of cortical regions, including the cingulated gyrus, occipital cortex, middle front gyrus, precuneus cortex, and the cerebellum. These findings brought insights into complex AD etiology and emphasized the importance of investigating different brain-imaging modalities.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Brain Informatics
Brain Informatics Computer Science-Computer Science Applications
CiteScore
9.50
自引率
0.00%
发文量
27
审稿时长
13 weeks
期刊介绍: Brain Informatics is an international, peer-reviewed, interdisciplinary open-access journal published under the brand SpringerOpen, which provides a unique platform for researchers and practitioners to disseminate original research on computational and informatics technologies related to brain. This journal addresses the computational, cognitive, physiological, biological, physical, ecological and social perspectives of brain informatics. It also welcomes emerging information technologies and advanced neuro-imaging technologies, such as big data analytics and interactive knowledge discovery related to various large-scale brain studies and their applications. This journal will publish high-quality original research papers, brief reports and critical reviews in all theoretical, technological, clinical and interdisciplinary studies that make up the field of brain informatics and its applications in brain-machine intelligence, brain-inspired intelligent systems, mental health and brain disorders, etc. The scope of papers includes the following five tracks: Track 1: Cognitive and Computational Foundations of Brain Science Track 2: Human Information Processing Systems Track 3: Brain Big Data Analytics, Curation and Management Track 4: Informatics Paradigms for Brain and Mental Health Research Track 5: Brain-Machine Intelligence and Brain-Inspired Computing
期刊最新文献
Novel machine learning-driven comparative analysis of CSP, STFT, and CSP-STFT fusion for EEG data classification across multiple meditation and non-meditation sessions in BCI pipeline. Rethinking the residual approach: leveraging statistical learning to operationalize cognitive resilience in Alzheimer's disease. CalciumZero: a toolbox for fluorescence calcium imaging on iPSC derived brain organoids. Blockchain-enabled digital twin system for brain stroke prediction. A temporal-spectral graph convolutional neural network model for EEG emotion recognition within and across subjects.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1