斯维科诺尔维根省东部边界的流体诱发变质作用和变形作用

IF 3.5 2区 地球科学 Q1 GEOCHEMISTRY & GEOPHYSICS Journal of Petrology Pub Date : 2024-02-03 DOI:10.1093/petrology/egae008
C L Urueña, C Möller
{"title":"斯维科诺尔维根省东部边界的流体诱发变质作用和变形作用","authors":"C L Urueña, C Möller","doi":"10.1093/petrology/egae008","DOIUrl":null,"url":null,"abstract":"The Sveconorwegian orogen in Scandinavia and the Grenville orogen in Canada are both remnants of large and hot orogens that formed part of the supercontinent Rodinia around 1 billion years ago. Formerly deeply buried portions of crust in these orogens are exposed and offer insights into the tectonic dynamics of the basement within large orogens. The Eastern Segment of the Sveconorwegian Province hosts a ~30 000 km2 crustal portion that was buried to c. 40 km depth at a late stage of the orogeny, 980–960 Ma ago, and is bound towards the foreland in the east by a ~25 km wide zone of step anastomosing deformation, the Frontal wedge. This zone represents the outermost ductile deformation that developed within the crystalline basement in the orogen. We investigated a heterogeneously deformed and recrystallised syenodiorite with the aim to understand the character of the deformation-related metamorphism within the Frontal wedge. Field relations, microtextures, and mineral reactions show that the metamorphic recrystallisation was governed by hydrous fluid infiltration along the ductile deformation zones. Equilibrium was attained on a millimetre scale only and metamorphic recrystallisation was dependent on the introduction of hydrous fluid. The metamorphism reached high-pressure epidote-amphibolite-facies; geothermobarometric estimates suggest 540–600 °C and 9–12 kbar. Metamorphic zircon formed during the breakdown of Zr-bearing igneous phases, primarily baddeleyite. SIMS U–Pb analyses of igneous zircon and baddeleyite date the igneous crystallisation of the syenodiorite at 1230 ± 6 Ma. Metamorphic zircon grains are <20 μm and too small for precise dating, but yielded ages around 1 Ga. Collectively, the metamorphic data indicate that subvertical movements along steep planes within the Frontal wedge allowed for the regional-scale tectonic burial to ~40 km depth of the Eastern Segment to the west. Some of the same steep deformation structures were re-utilised as discrete movement planes during later exhumation.","PeriodicalId":16751,"journal":{"name":"Journal of Petrology","volume":null,"pages":null},"PeriodicalIF":3.5000,"publicationDate":"2024-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fluid-induced metamorphism and deformation at the eastern boundary of the Sveconorwegian Province\",\"authors\":\"C L Urueña, C Möller\",\"doi\":\"10.1093/petrology/egae008\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Sveconorwegian orogen in Scandinavia and the Grenville orogen in Canada are both remnants of large and hot orogens that formed part of the supercontinent Rodinia around 1 billion years ago. Formerly deeply buried portions of crust in these orogens are exposed and offer insights into the tectonic dynamics of the basement within large orogens. The Eastern Segment of the Sveconorwegian Province hosts a ~30 000 km2 crustal portion that was buried to c. 40 km depth at a late stage of the orogeny, 980–960 Ma ago, and is bound towards the foreland in the east by a ~25 km wide zone of step anastomosing deformation, the Frontal wedge. This zone represents the outermost ductile deformation that developed within the crystalline basement in the orogen. We investigated a heterogeneously deformed and recrystallised syenodiorite with the aim to understand the character of the deformation-related metamorphism within the Frontal wedge. Field relations, microtextures, and mineral reactions show that the metamorphic recrystallisation was governed by hydrous fluid infiltration along the ductile deformation zones. Equilibrium was attained on a millimetre scale only and metamorphic recrystallisation was dependent on the introduction of hydrous fluid. The metamorphism reached high-pressure epidote-amphibolite-facies; geothermobarometric estimates suggest 540–600 °C and 9–12 kbar. Metamorphic zircon formed during the breakdown of Zr-bearing igneous phases, primarily baddeleyite. SIMS U–Pb analyses of igneous zircon and baddeleyite date the igneous crystallisation of the syenodiorite at 1230 ± 6 Ma. Metamorphic zircon grains are <20 μm and too small for precise dating, but yielded ages around 1 Ga. Collectively, the metamorphic data indicate that subvertical movements along steep planes within the Frontal wedge allowed for the regional-scale tectonic burial to ~40 km depth of the Eastern Segment to the west. Some of the same steep deformation structures were re-utilised as discrete movement planes during later exhumation.\",\"PeriodicalId\":16751,\"journal\":{\"name\":\"Journal of Petrology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-02-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Petrology\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1093/petrology/egae008\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Petrology","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1093/petrology/egae008","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

斯堪的纳维亚半岛的斯维科诺尔维根造山带和加拿大的格勒尼维尔造山带都是大型热造山带的遗迹,这些造山带在大约 10 亿年前形成了超大陆罗迪尼亚的一部分。这些造山带中以前深埋的地壳部分已经暴露出来,为了解大型造山带内基底的构造动力学提供了线索。斯维科诺尔维根省东段拥有约 3 万平方公里的地壳部分,在造山运动晚期(距今 980-960 千兆年前)被埋深约 40 千米,并被约 25 千米宽的阶梯式吻合变形带--额楔--向东部前陆延伸。这一区域代表了造山带结晶基底内发育的最外层韧性变形。我们对一块异质变形和重结晶的正长岩进行了研究,目的是了解额楔内与变形相关的变质作用的特征。现场关系、微观性质和矿物反应表明,变质重结晶是由沿韧性变形带的含水流体渗透所控制的。仅在毫米尺度上达到平衡,变质重结晶取决于含水流体的引入。变质作用达到了表斜石-闪长岩类型的高压;地热-气压估算表明温度为 540-600 °C,气压为 9-12 千巴。变质锆石是在含锆火成岩相(主要是巴德雷石)分解过程中形成的。对火成岩锆石和巴德来石的 SIMS U-Pb 分析显示,正长岩的火成岩结晶时间为 1230 ± 6 Ma。变质锆石的粒度为<20 μm,粒度太小,无法进行精确的年代测定,但得出的年代约为1 Ga。总之,变质数据表明,沿额尔齐斯楔内陡峭平面的俯冲运动,使得东段向西的区域规模构造埋藏至~40千米深处。在后来的掘起过程中,一些同样的陡峭变形结构被重新利用,成为离散的运动平面。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Fluid-induced metamorphism and deformation at the eastern boundary of the Sveconorwegian Province
The Sveconorwegian orogen in Scandinavia and the Grenville orogen in Canada are both remnants of large and hot orogens that formed part of the supercontinent Rodinia around 1 billion years ago. Formerly deeply buried portions of crust in these orogens are exposed and offer insights into the tectonic dynamics of the basement within large orogens. The Eastern Segment of the Sveconorwegian Province hosts a ~30 000 km2 crustal portion that was buried to c. 40 km depth at a late stage of the orogeny, 980–960 Ma ago, and is bound towards the foreland in the east by a ~25 km wide zone of step anastomosing deformation, the Frontal wedge. This zone represents the outermost ductile deformation that developed within the crystalline basement in the orogen. We investigated a heterogeneously deformed and recrystallised syenodiorite with the aim to understand the character of the deformation-related metamorphism within the Frontal wedge. Field relations, microtextures, and mineral reactions show that the metamorphic recrystallisation was governed by hydrous fluid infiltration along the ductile deformation zones. Equilibrium was attained on a millimetre scale only and metamorphic recrystallisation was dependent on the introduction of hydrous fluid. The metamorphism reached high-pressure epidote-amphibolite-facies; geothermobarometric estimates suggest 540–600 °C and 9–12 kbar. Metamorphic zircon formed during the breakdown of Zr-bearing igneous phases, primarily baddeleyite. SIMS U–Pb analyses of igneous zircon and baddeleyite date the igneous crystallisation of the syenodiorite at 1230 ± 6 Ma. Metamorphic zircon grains are <20 μm and too small for precise dating, but yielded ages around 1 Ga. Collectively, the metamorphic data indicate that subvertical movements along steep planes within the Frontal wedge allowed for the regional-scale tectonic burial to ~40 km depth of the Eastern Segment to the west. Some of the same steep deformation structures were re-utilised as discrete movement planes during later exhumation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Petrology
Journal of Petrology 地学-地球化学与地球物理
CiteScore
6.90
自引率
12.80%
发文量
117
审稿时长
12 months
期刊介绍: The Journal of Petrology provides an international forum for the publication of high quality research in the broad field of igneous and metamorphic petrology and petrogenesis. Papers published cover a vast range of topics in areas such as major element, trace element and isotope geochemistry and geochronology applied to petrogenesis; experimental petrology; processes of magma generation, differentiation and emplacement; quantitative studies of rock-forming minerals and their paragenesis; regional studies of igneous and meta morphic rocks which contribute to the solution of fundamental petrological problems; theoretical modelling of petrogenetic processes.
期刊最新文献
Unraveling the Magmatic-to-Carbothermal Processes in the Ba-Sr-REE Mineralization of the Sevattur Carbonatites, India Geodynamic Evolution of the Proto-Tethys Ocean in the West Kunlun Orogenic Belt, NW Tibet: Implications from the Sub-Arc Crust and Lithospheric Mantle Modification Crystals and melt inclusions record deep storage of superhydrous magma prior to the largest known eruption of Cerro Machín volcano, Colombia Composite melt-rock interactions in the lowermost continental crust: insights from a dunite-pyroxenite-gabbronorite association of the Mafic Complex from the Ivrea-Verbano Zone (Italian Alps) Reexamining the Honolulu Volcanics: Hawai‘i's classic case of rejuvenation volcanism
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1