使用阳离子表面活性剂在强酸环境中进行过氧化氢电合成

Zachary Adler, Xiao Zhang, Guangxia Feng, Yaping Shi, Peng Zhu, Yang Xia, Xiaonan Shan* and Haotian Wang*, 
{"title":"使用阳离子表面活性剂在强酸环境中进行过氧化氢电合成","authors":"Zachary Adler,&nbsp;Xiao Zhang,&nbsp;Guangxia Feng,&nbsp;Yaping Shi,&nbsp;Peng Zhu,&nbsp;Yang Xia,&nbsp;Xiaonan Shan* and Haotian Wang*,&nbsp;","doi":"10.1021/prechem.3c00096","DOIUrl":null,"url":null,"abstract":"<p >The two-electron oxygen reduction reaction (2e<sup>–</sup>-ORR) can be exploited for green production of hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>), but it still suffers from low selectivity in an acidic electrolyte when using non-noble metal catalysts. Here, inspired by biology, we demonstrate a strategy that exploits the micellization of surfactant molecules to promote the H<sub>2</sub>O<sub>2</sub> selectivity of a low-cost carbon black catalyst in strong acid electrolytes. The surfactants near the electrode surface increase the oxygen solubility and transportation, and they provide a shielding effect that displaces protons from the electric double layer (EDL). Compared with the case of a pure acidic electrolyte, we find that, when a small number of surfactant molecules were added to the acid, the H<sub>2</sub>O<sub>2</sub> Faradaic efficiency (FE) was improved from 12% to 95% H<sub>2</sub>O<sub>2</sub> under 200 mA cm<sup>–2</sup>, suggesting an 8-fold improvement. Our in situ surface enhanced Raman spectroscopy (SERS) and optical microscopy (OM) studies suggest that, while the added surfactant reduces the electrode’s hydrophobicity, its micelle formation could promote the O<sub>2</sub> gas transport and its hydrophobic tail could displace local protons under applied negative potentials during catalysis, which are responsible for the improved H<sub>2</sub>O<sub>2</sub> selectivity in strong acids.</p>","PeriodicalId":29793,"journal":{"name":"Precision Chemistry","volume":"2 4","pages":"129–137"},"PeriodicalIF":0.0000,"publicationDate":"2024-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/prechem.3c00096","citationCount":"0","resultStr":"{\"title\":\"Hydrogen Peroxide Electrosynthesis in a Strong Acidic Environment Using Cationic Surfactants\",\"authors\":\"Zachary Adler,&nbsp;Xiao Zhang,&nbsp;Guangxia Feng,&nbsp;Yaping Shi,&nbsp;Peng Zhu,&nbsp;Yang Xia,&nbsp;Xiaonan Shan* and Haotian Wang*,&nbsp;\",\"doi\":\"10.1021/prechem.3c00096\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >The two-electron oxygen reduction reaction (2e<sup>–</sup>-ORR) can be exploited for green production of hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>), but it still suffers from low selectivity in an acidic electrolyte when using non-noble metal catalysts. Here, inspired by biology, we demonstrate a strategy that exploits the micellization of surfactant molecules to promote the H<sub>2</sub>O<sub>2</sub> selectivity of a low-cost carbon black catalyst in strong acid electrolytes. The surfactants near the electrode surface increase the oxygen solubility and transportation, and they provide a shielding effect that displaces protons from the electric double layer (EDL). Compared with the case of a pure acidic electrolyte, we find that, when a small number of surfactant molecules were added to the acid, the H<sub>2</sub>O<sub>2</sub> Faradaic efficiency (FE) was improved from 12% to 95% H<sub>2</sub>O<sub>2</sub> under 200 mA cm<sup>–2</sup>, suggesting an 8-fold improvement. Our in situ surface enhanced Raman spectroscopy (SERS) and optical microscopy (OM) studies suggest that, while the added surfactant reduces the electrode’s hydrophobicity, its micelle formation could promote the O<sub>2</sub> gas transport and its hydrophobic tail could displace local protons under applied negative potentials during catalysis, which are responsible for the improved H<sub>2</sub>O<sub>2</sub> selectivity in strong acids.</p>\",\"PeriodicalId\":29793,\"journal\":{\"name\":\"Precision Chemistry\",\"volume\":\"2 4\",\"pages\":\"129–137\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-02-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.acs.org/doi/epdf/10.1021/prechem.3c00096\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Precision Chemistry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/prechem.3c00096\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Precision Chemistry","FirstCategoryId":"1085","ListUrlMain":"https://pubs.acs.org/doi/10.1021/prechem.3c00096","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

双电子氧还原反应(2e-ORR)可用于过氧化氢(H2O2)的绿色生产,但在酸性电解质中使用非贵金属催化剂时,其选择性仍然很低。在此,我们受生物学启发,展示了一种利用表面活性剂分子的胶束化来提高低成本炭黑催化剂在强酸电解质中的 H2O2 选择性的策略。电极表面附近的表面活性剂增加了氧气的溶解度和运输,并提供了一种屏蔽效应,将质子从电双层(EDL)中置换出来。与纯酸性电解质相比,我们发现当酸性电解质中加入少量表面活性剂分子时,在 200 mA cm-2 的条件下,H2O2 法拉第效率(FE)从 12% 提高到 95%,提高了 8 倍。我们的原位表面增强拉曼光谱(SERS)和光学显微镜(OM)研究表明,虽然添加的表面活性剂降低了电极的疏水性,但其胶束的形成可以促进 O2 气体的传输,而且在催化过程中,其疏水性尾部可以在施加负电位时置换局部质子,这些都是在强酸中提高 H2O2 选择性的原因。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Hydrogen Peroxide Electrosynthesis in a Strong Acidic Environment Using Cationic Surfactants

The two-electron oxygen reduction reaction (2e-ORR) can be exploited for green production of hydrogen peroxide (H2O2), but it still suffers from low selectivity in an acidic electrolyte when using non-noble metal catalysts. Here, inspired by biology, we demonstrate a strategy that exploits the micellization of surfactant molecules to promote the H2O2 selectivity of a low-cost carbon black catalyst in strong acid electrolytes. The surfactants near the electrode surface increase the oxygen solubility and transportation, and they provide a shielding effect that displaces protons from the electric double layer (EDL). Compared with the case of a pure acidic electrolyte, we find that, when a small number of surfactant molecules were added to the acid, the H2O2 Faradaic efficiency (FE) was improved from 12% to 95% H2O2 under 200 mA cm–2, suggesting an 8-fold improvement. Our in situ surface enhanced Raman spectroscopy (SERS) and optical microscopy (OM) studies suggest that, while the added surfactant reduces the electrode’s hydrophobicity, its micelle formation could promote the O2 gas transport and its hydrophobic tail could displace local protons under applied negative potentials during catalysis, which are responsible for the improved H2O2 selectivity in strong acids.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Precision Chemistry
Precision Chemistry 精密化学技术-
CiteScore
0.80
自引率
0.00%
发文量
0
期刊介绍: Chemical research focused on precision enables more controllable predictable and accurate outcomes which in turn drive innovation in measurement science sustainable materials information materials personalized medicines energy environmental science and countless other fields requiring chemical insights.Precision Chemistry provides a unique and highly focused publishing venue for fundamental applied and interdisciplinary research aiming to achieve precision calculation design synthesis manipulation measurement and manufacturing. It is committed to bringing together researchers from across the chemical sciences and the related scientific areas to showcase original research and critical reviews of exceptional quality significance and interest to the broad chemistry and scientific community.
期刊最新文献
Issue Publication Information Issue Editorial Masthead Issue Editorial Masthead Issue Publication Information Precision in Sensing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1