利用微波加热处理合成碳酸盐羟基磷灰石纳米粒子的能效及其对材料特性的影响

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Accounts of Chemical Research Pub Date : 2024-02-01 DOI:10.22146/ijc.88155
Saifuddin Aziz, H. D. Pranowo, I. Ana, Yusril Yusuf
{"title":"利用微波加热处理合成碳酸盐羟基磷灰石纳米粒子的能效及其对材料特性的影响","authors":"Saifuddin Aziz, H. D. Pranowo, I. Ana, Yusril Yusuf","doi":"10.22146/ijc.88155","DOIUrl":null,"url":null,"abstract":"This work aimed to study the energy efficiency of the synthesis process of carbonated hydroxyapatite (CHA) nanoparticles using microwave heating treatment and its effect on material characteristics. Microwaves can provide heat quickly, so it is expected to increase the efficiency of CHA synthesis through the heat provided. The CHA nanoparticles were synthesized using precipitation and heated using a microwave oven. The unheated and hydrothermal-heated precipitation methods were also conducted for comparison purposes. The microwave-heated precipitations were done at 270 W for 0.05, 0.10, and 0.15 h, while the hydrothermal-heated precipitations were done at 100 °C for 1, 2, and 3 h. The CHA materials were characterized using an infrared spectrophotometer, X-ray diffractometer, and electron microscope. The X-ray diffractogram and infrared spectra confirmed that the synthesized materials had a hydroxyapatite crystal phase with a CO32− functional group in their spectra. Microscopic images revealed that the materials were nanometer-sized grain aggregates. The heat treatment and duration increased the material characteristics, i.e., crystallinity, crystallite, and grain size. The CHA with microwave heat treatment had the highest crystallinity and crystallite size. The electrical energy calculation revealed microwave heating had better energy efficiency than hydrothermal heating.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":"9 2","pages":""},"PeriodicalIF":16.4000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Energy Efficiency of the Carbonate Hydroxyapatite Nanoparticle Synthesis Using Microwave Heating Treatment and Its Effect on Material Characteristics\",\"authors\":\"Saifuddin Aziz, H. D. Pranowo, I. Ana, Yusril Yusuf\",\"doi\":\"10.22146/ijc.88155\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work aimed to study the energy efficiency of the synthesis process of carbonated hydroxyapatite (CHA) nanoparticles using microwave heating treatment and its effect on material characteristics. Microwaves can provide heat quickly, so it is expected to increase the efficiency of CHA synthesis through the heat provided. The CHA nanoparticles were synthesized using precipitation and heated using a microwave oven. The unheated and hydrothermal-heated precipitation methods were also conducted for comparison purposes. The microwave-heated precipitations were done at 270 W for 0.05, 0.10, and 0.15 h, while the hydrothermal-heated precipitations were done at 100 °C for 1, 2, and 3 h. The CHA materials were characterized using an infrared spectrophotometer, X-ray diffractometer, and electron microscope. The X-ray diffractogram and infrared spectra confirmed that the synthesized materials had a hydroxyapatite crystal phase with a CO32− functional group in their spectra. Microscopic images revealed that the materials were nanometer-sized grain aggregates. The heat treatment and duration increased the material characteristics, i.e., crystallinity, crystallite, and grain size. The CHA with microwave heat treatment had the highest crystallinity and crystallite size. The electrical energy calculation revealed microwave heating had better energy efficiency than hydrothermal heating.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":\"9 2\",\"pages\":\"\"},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22146/ijc.88155\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22146/ijc.88155","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

这项工作旨在研究利用微波加热处理碳化羟基磷灰石(CHA)纳米粒子合成过程的能效及其对材料特性的影响。微波能快速提供热量,因此有望通过提供热量来提高 CHA 的合成效率。CHA 纳米粒子采用沉淀法合成,并使用微波炉加热。为了进行比较,还采用了非加热沉淀法和水热加热沉淀法。使用红外分光光度计、X 射线衍射仪和电子显微镜对 CHA 材料进行了表征。X 射线衍射图和红外光谱证实,合成的材料具有羟基磷灰石晶相,其光谱中含有 CO32- 官能团。显微图像显示,这些材料是纳米尺寸的晶粒聚集体。热处理和持续时间增加了材料的特性,即结晶度、晶粒和晶粒尺寸。经微波热处理的 CHA 的结晶度和晶粒度最高。电能计算显示,微波加热比水热加热具有更好的能效。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Energy Efficiency of the Carbonate Hydroxyapatite Nanoparticle Synthesis Using Microwave Heating Treatment and Its Effect on Material Characteristics
This work aimed to study the energy efficiency of the synthesis process of carbonated hydroxyapatite (CHA) nanoparticles using microwave heating treatment and its effect on material characteristics. Microwaves can provide heat quickly, so it is expected to increase the efficiency of CHA synthesis through the heat provided. The CHA nanoparticles were synthesized using precipitation and heated using a microwave oven. The unheated and hydrothermal-heated precipitation methods were also conducted for comparison purposes. The microwave-heated precipitations were done at 270 W for 0.05, 0.10, and 0.15 h, while the hydrothermal-heated precipitations were done at 100 °C for 1, 2, and 3 h. The CHA materials were characterized using an infrared spectrophotometer, X-ray diffractometer, and electron microscope. The X-ray diffractogram and infrared spectra confirmed that the synthesized materials had a hydroxyapatite crystal phase with a CO32− functional group in their spectra. Microscopic images revealed that the materials were nanometer-sized grain aggregates. The heat treatment and duration increased the material characteristics, i.e., crystallinity, crystallite, and grain size. The CHA with microwave heat treatment had the highest crystallinity and crystallite size. The electrical energy calculation revealed microwave heating had better energy efficiency than hydrothermal heating.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
期刊最新文献
Diversity-Generating Skeletal Editing Transformations. Single-Electron-Transfer-Mediated Carbonylation Reactions. Strengthening Liquid Crystal Elastomer Muscles. Structural and Mechanistic Advances in the Chemistry of Methyl-Coenzyme M Reductase (MCR). Issue Publication Information
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1