{"title":"低成本物联网室内空气质量监测系统:系统综述","authors":"João Peixe, Gonçalo Marques","doi":"10.3233/ais-220577","DOIUrl":null,"url":null,"abstract":"Indoor air quality (IAQ) is a critical challenge much less controlled in comparison with outdoor air quality. Bad IAQ is related to significant health complications such as respiratory problems, heart disease, and cancer. Many people spend most of their days inside buildings and don’t have air quality monitoring systems. Therefore, the occupants don’t know when the space has a higher quantity of pollutants than recommended, saturating the environment, and compromising people’s health. This is a problem that can be addressed by using Internet of Things (IoT) technologies to develop monitoring systems that allow a greater number of possibilities regarding the storage and processing of data and access to information by the end user, assisting the decision-making process regarding the indoor air pollution problem. Real-time data can be compared to default values, alerting the user of that situation, and suggesting an action to decrease the air pollutants concentration. There already are multiple solutions involving IoT-based technologies, many of them using low-cost sensors. Those are analyzed in this systematic review. Furthermore, the COVID-19 pandemic pointed out the importance of IAQ monitoring to evaluate the risk of contamination. The microcontrollers, IAQ parameters, sensors, data storage and visualization methods used in monitoring systems have been analyzed. The results show that most of the studies store data in Cloud systems and use Web platforms for data consulting. However, sensor calibration and efficient energy consumption are challenges that still exist.","PeriodicalId":508128,"journal":{"name":"Journal of Ambient Intelligence and Smart Environments","volume":"50 20","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Low-cost IoT-enabled indoor air quality monitoring systems: A systematic review\",\"authors\":\"João Peixe, Gonçalo Marques\",\"doi\":\"10.3233/ais-220577\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Indoor air quality (IAQ) is a critical challenge much less controlled in comparison with outdoor air quality. Bad IAQ is related to significant health complications such as respiratory problems, heart disease, and cancer. Many people spend most of their days inside buildings and don’t have air quality monitoring systems. Therefore, the occupants don’t know when the space has a higher quantity of pollutants than recommended, saturating the environment, and compromising people’s health. This is a problem that can be addressed by using Internet of Things (IoT) technologies to develop monitoring systems that allow a greater number of possibilities regarding the storage and processing of data and access to information by the end user, assisting the decision-making process regarding the indoor air pollution problem. Real-time data can be compared to default values, alerting the user of that situation, and suggesting an action to decrease the air pollutants concentration. There already are multiple solutions involving IoT-based technologies, many of them using low-cost sensors. Those are analyzed in this systematic review. Furthermore, the COVID-19 pandemic pointed out the importance of IAQ monitoring to evaluate the risk of contamination. The microcontrollers, IAQ parameters, sensors, data storage and visualization methods used in monitoring systems have been analyzed. The results show that most of the studies store data in Cloud systems and use Web platforms for data consulting. However, sensor calibration and efficient energy consumption are challenges that still exist.\",\"PeriodicalId\":508128,\"journal\":{\"name\":\"Journal of Ambient Intelligence and Smart Environments\",\"volume\":\"50 20\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Ambient Intelligence and Smart Environments\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3233/ais-220577\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Ambient Intelligence and Smart Environments","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3233/ais-220577","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Low-cost IoT-enabled indoor air quality monitoring systems: A systematic review
Indoor air quality (IAQ) is a critical challenge much less controlled in comparison with outdoor air quality. Bad IAQ is related to significant health complications such as respiratory problems, heart disease, and cancer. Many people spend most of their days inside buildings and don’t have air quality monitoring systems. Therefore, the occupants don’t know when the space has a higher quantity of pollutants than recommended, saturating the environment, and compromising people’s health. This is a problem that can be addressed by using Internet of Things (IoT) technologies to develop monitoring systems that allow a greater number of possibilities regarding the storage and processing of data and access to information by the end user, assisting the decision-making process regarding the indoor air pollution problem. Real-time data can be compared to default values, alerting the user of that situation, and suggesting an action to decrease the air pollutants concentration. There already are multiple solutions involving IoT-based technologies, many of them using low-cost sensors. Those are analyzed in this systematic review. Furthermore, the COVID-19 pandemic pointed out the importance of IAQ monitoring to evaluate the risk of contamination. The microcontrollers, IAQ parameters, sensors, data storage and visualization methods used in monitoring systems have been analyzed. The results show that most of the studies store data in Cloud systems and use Web platforms for data consulting. However, sensor calibration and efficient energy consumption are challenges that still exist.