在纵向建模中,两个时间点数据对了解个体差异的局限性 - 差异能揭示哪些变化?

IF 4.6 2区 医学 Q1 NEUROSCIENCES Developmental Cognitive Neuroscience Pub Date : 2024-02-05 DOI:10.1016/j.dcn.2024.101353
Sam Parsons , Ethan M. McCormick
{"title":"在纵向建模中,两个时间点数据对了解个体差异的局限性 - 差异能揭示哪些变化?","authors":"Sam Parsons ,&nbsp;Ethan M. McCormick","doi":"10.1016/j.dcn.2024.101353","DOIUrl":null,"url":null,"abstract":"<div><p>Emerging neuroimaging studies investigating changes in the brain aim to collect sufficient data points to examine trajectories of change across key developmental periods. Yet, current studies are often constrained by the number of time points available now. We demonstrate that these constraints should be taken seriously and that studies with two time points should focus on particular questions (e.g., group-level or intervention effects), while complex questions of individual differences and investigations into causes and consequences of those differences should be deferred until additional time points can be incorporated into models of change. We generated underlying longitudinal data and fit models with 2, 3, 4, and 5 time points across 1000 samples. While fixed effects could be recovered on average even with few time points, recovery of individual differences was particularly poor for the two time point model, correlating at <em>r</em> = 0.41 with the true individual parameters - meaning these scores share only 16.8% of variance As expected, models with more time points recovered the growth parameter more accurately; yet parameter recovery for the three time point model was still low, correlating around <em>r</em> = 0.57. We argue that preliminary analyses on early subsets of time points in longitudinal analyses should focus on these average or group-level effects and that individual difference questions should be addressed in samples that maximize the number of time points available. We conclude with recommendations for researchers using early time point models, including ideas for preregistration, careful interpretation of 2 time point results, and treating longitudinal analyses as dynamic, where early findings are updated as additional information becomes available.</p></div>","PeriodicalId":49083,"journal":{"name":"Developmental Cognitive Neuroscience","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1878929324000148/pdfft?md5=16987b0a6d2c6783b61dcc6085b4a810&pid=1-s2.0-S1878929324000148-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Limitations of two time point data for understanding individual differences in longitudinal modeling — What can difference reveal about change?\",\"authors\":\"Sam Parsons ,&nbsp;Ethan M. McCormick\",\"doi\":\"10.1016/j.dcn.2024.101353\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Emerging neuroimaging studies investigating changes in the brain aim to collect sufficient data points to examine trajectories of change across key developmental periods. Yet, current studies are often constrained by the number of time points available now. We demonstrate that these constraints should be taken seriously and that studies with two time points should focus on particular questions (e.g., group-level or intervention effects), while complex questions of individual differences and investigations into causes and consequences of those differences should be deferred until additional time points can be incorporated into models of change. We generated underlying longitudinal data and fit models with 2, 3, 4, and 5 time points across 1000 samples. While fixed effects could be recovered on average even with few time points, recovery of individual differences was particularly poor for the two time point model, correlating at <em>r</em> = 0.41 with the true individual parameters - meaning these scores share only 16.8% of variance As expected, models with more time points recovered the growth parameter more accurately; yet parameter recovery for the three time point model was still low, correlating around <em>r</em> = 0.57. We argue that preliminary analyses on early subsets of time points in longitudinal analyses should focus on these average or group-level effects and that individual difference questions should be addressed in samples that maximize the number of time points available. We conclude with recommendations for researchers using early time point models, including ideas for preregistration, careful interpretation of 2 time point results, and treating longitudinal analyses as dynamic, where early findings are updated as additional information becomes available.</p></div>\",\"PeriodicalId\":49083,\"journal\":{\"name\":\"Developmental Cognitive Neuroscience\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-02-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S1878929324000148/pdfft?md5=16987b0a6d2c6783b61dcc6085b4a810&pid=1-s2.0-S1878929324000148-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Developmental Cognitive Neuroscience\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1878929324000148\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Developmental Cognitive Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1878929324000148","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

调查大脑变化的新兴神经影像学研究旨在收集足够的数据点,以研究关键发育期的变化轨迹。然而,目前的研究往往受到可用时间点数量的限制。我们的研究表明,应该认真对待这些制约因素,有两个时间点的研究应侧重于特定问题(如群体水平或干预效果),而关于个体差异的复杂问题以及对这些差异的原因和后果的研究则应推迟到能将更多时间点纳入变化模型之后再进行。我们生成了基本的纵向数据,并在 1000 个样本中分别拟合了 2、3、4 和 5 个时间点的模型。虽然即使时间点较少,也能平均恢复固定效应,但两个时间点模型对个体差异的恢复特别差,与真实个体参数的相关性为 r = 0.41,这意味着这些分数只分担了 16.8% 的方差。我们认为,在纵向分析中,对早期时间点子集的初步分析应侧重于这些平均或群体水平的效应,而个体差异问题则应在样本中解决,从而最大限度地增加可用时间点的数量。最后,我们为使用早期时间点模型的研究人员提出了一些建议,包括预先登记、仔细解释两个时间点的结果,以及将纵向分析视为动态分析,即随着更多信息的出现而更新早期研究结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Limitations of two time point data for understanding individual differences in longitudinal modeling — What can difference reveal about change?

Emerging neuroimaging studies investigating changes in the brain aim to collect sufficient data points to examine trajectories of change across key developmental periods. Yet, current studies are often constrained by the number of time points available now. We demonstrate that these constraints should be taken seriously and that studies with two time points should focus on particular questions (e.g., group-level or intervention effects), while complex questions of individual differences and investigations into causes and consequences of those differences should be deferred until additional time points can be incorporated into models of change. We generated underlying longitudinal data and fit models with 2, 3, 4, and 5 time points across 1000 samples. While fixed effects could be recovered on average even with few time points, recovery of individual differences was particularly poor for the two time point model, correlating at r = 0.41 with the true individual parameters - meaning these scores share only 16.8% of variance As expected, models with more time points recovered the growth parameter more accurately; yet parameter recovery for the three time point model was still low, correlating around r = 0.57. We argue that preliminary analyses on early subsets of time points in longitudinal analyses should focus on these average or group-level effects and that individual difference questions should be addressed in samples that maximize the number of time points available. We conclude with recommendations for researchers using early time point models, including ideas for preregistration, careful interpretation of 2 time point results, and treating longitudinal analyses as dynamic, where early findings are updated as additional information becomes available.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.60
自引率
10.60%
发文量
124
审稿时长
6-12 weeks
期刊介绍: The journal publishes theoretical and research papers on cognitive brain development, from infancy through childhood and adolescence and into adulthood. It covers neurocognitive development and neurocognitive processing in both typical and atypical development, including social and affective aspects. Appropriate methodologies for the journal include, but are not limited to, functional neuroimaging (fMRI and MEG), electrophysiology (EEG and ERP), NIRS and transcranial magnetic stimulation, as well as other basic neuroscience approaches using cellular and animal models that directly address cognitive brain development, patient studies, case studies, post-mortem studies and pharmacological studies.
期刊最新文献
Early childhood family threat and longitudinal amygdala-mPFC circuit development: Examining cortical thickness and gray matter-white matter contrast Measurement of emerging neurocognitive and language skills in the HEALthy Brain and Child Development (HBCD) study Editorial Board/Aims and Scope Cognitive control processes and emotion regulation in adolescence: Examining the impact of affective inhibition and heart-rate-variability on emotion regulation dynamics in daily life Exploring the late maturation of an intrinsic episodic memory network: A resting-state fMRI study
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1