土地利用变化和森林管理对美国东北部土壤碳储量的影响

IF 3.9 3区 环境科学与生态学 Q2 ENVIRONMENTAL SCIENCES Carbon Balance and Management Pub Date : 2024-02-06 DOI:10.1186/s13021-024-00251-7
Lucas E. Nave, Kendall DeLyser, Grant M. Domke, Scott M. Holub, Maria K. Janowiak, Adrienne B. Keller, Matthew P. Peters, Kevin A. Solarik, Brian F. Walters, Christopher W. Swanston
{"title":"土地利用变化和森林管理对美国东北部土壤碳储量的影响","authors":"Lucas E. Nave,&nbsp;Kendall DeLyser,&nbsp;Grant M. Domke,&nbsp;Scott M. Holub,&nbsp;Maria K. Janowiak,&nbsp;Adrienne B. Keller,&nbsp;Matthew P. Peters,&nbsp;Kevin A. Solarik,&nbsp;Brian F. Walters,&nbsp;Christopher W. Swanston","doi":"10.1186/s13021-024-00251-7","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><p>In most regions and ecosystems, soils are the largest terrestrial carbon pool. Their potential vulnerability to climate and land use change, management, and other drivers, along with soils’ ability to mitigate climate change through carbon sequestration, makes them important to carbon balance and management. To date, most studies of soil carbon management have been based at either large or site-specific scales, resulting in either broad generalizations or narrow conclusions, respectively. Advancing the science and practice of soil carbon management requires scientific progress at intermediate scales. Here, we conducted the fifth in a series of ecoregional assessments of the effects of land use change and forest management on soil carbon stocks, this time addressing the Northeast U.S. We used synthesis approaches including (1) meta-analysis of published literature, (2) soil survey and (3) national forest inventory databases to examine overall effects and underlying drivers of deforestation, reforestation, and forest harvesting on soil carbon stocks. The three complementary data sources allowed us to quantify direction, magnitude, and uncertainty in trends.</p><h3>Results</h3><p>Our meta-analysis findings revealed regionally consistent declines in soil carbon stocks due to deforestation, whether for agriculture or urban development. Conversely, reforestation led to significant increases in soil C stocks, with variation based on specific geographic factors. Forest harvesting showed no significant effect on soil carbon stocks, regardless of place-based or practice-specific factors. Observational soil survey and national forest inventory data generally supported meta-analytic harvest trends, and provided broader context by revealing the factors that act as baseline controls on soil carbon stocks in this ecoregion of carbon-dense soils. These factors include a range of soil physical, parent material, and topographic controls, with land use and climate factors also playing a role.</p><h3>Conclusions</h3><p>Forest harvesting has limited potential to alter forest soil C stocks in either direction, in contrast to the significant changes driven by land use shifts. These findings underscore the importance of understanding soil C changes at intermediate scales, and the need for an all-lands approach to managing soil carbon for climate change mitigation in the Northeast U.S.</p></div>","PeriodicalId":505,"journal":{"name":"Carbon Balance and Management","volume":"19 1","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2024-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://cbmjournal.biomedcentral.com/counter/pdf/10.1186/s13021-024-00251-7","citationCount":"0","resultStr":"{\"title\":\"Land use change and forest management effects on soil carbon stocks in the Northeast U.S.\",\"authors\":\"Lucas E. Nave,&nbsp;Kendall DeLyser,&nbsp;Grant M. Domke,&nbsp;Scott M. Holub,&nbsp;Maria K. Janowiak,&nbsp;Adrienne B. Keller,&nbsp;Matthew P. Peters,&nbsp;Kevin A. Solarik,&nbsp;Brian F. Walters,&nbsp;Christopher W. Swanston\",\"doi\":\"10.1186/s13021-024-00251-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Background</h3><p>In most regions and ecosystems, soils are the largest terrestrial carbon pool. Their potential vulnerability to climate and land use change, management, and other drivers, along with soils’ ability to mitigate climate change through carbon sequestration, makes them important to carbon balance and management. To date, most studies of soil carbon management have been based at either large or site-specific scales, resulting in either broad generalizations or narrow conclusions, respectively. Advancing the science and practice of soil carbon management requires scientific progress at intermediate scales. Here, we conducted the fifth in a series of ecoregional assessments of the effects of land use change and forest management on soil carbon stocks, this time addressing the Northeast U.S. We used synthesis approaches including (1) meta-analysis of published literature, (2) soil survey and (3) national forest inventory databases to examine overall effects and underlying drivers of deforestation, reforestation, and forest harvesting on soil carbon stocks. The three complementary data sources allowed us to quantify direction, magnitude, and uncertainty in trends.</p><h3>Results</h3><p>Our meta-analysis findings revealed regionally consistent declines in soil carbon stocks due to deforestation, whether for agriculture or urban development. Conversely, reforestation led to significant increases in soil C stocks, with variation based on specific geographic factors. Forest harvesting showed no significant effect on soil carbon stocks, regardless of place-based or practice-specific factors. Observational soil survey and national forest inventory data generally supported meta-analytic harvest trends, and provided broader context by revealing the factors that act as baseline controls on soil carbon stocks in this ecoregion of carbon-dense soils. These factors include a range of soil physical, parent material, and topographic controls, with land use and climate factors also playing a role.</p><h3>Conclusions</h3><p>Forest harvesting has limited potential to alter forest soil C stocks in either direction, in contrast to the significant changes driven by land use shifts. These findings underscore the importance of understanding soil C changes at intermediate scales, and the need for an all-lands approach to managing soil carbon for climate change mitigation in the Northeast U.S.</p></div>\",\"PeriodicalId\":505,\"journal\":{\"name\":\"Carbon Balance and Management\",\"volume\":\"19 1\",\"pages\":\"\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2024-02-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://cbmjournal.biomedcentral.com/counter/pdf/10.1186/s13021-024-00251-7\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Carbon Balance and Management\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://link.springer.com/article/10.1186/s13021-024-00251-7\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbon Balance and Management","FirstCategoryId":"89","ListUrlMain":"https://link.springer.com/article/10.1186/s13021-024-00251-7","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

背景:在大多数地区和生态系统中,土壤是最大的陆地碳库。土壤对气候和土地利用变化、管理和其他驱动因素的潜在脆弱性,以及土壤通过固碳减缓气候变化的能力,使其对碳平衡和管理具有重要意义。迄今为止,有关土壤碳管理的大多数研究都是基于大尺度或特定地点的,分别得出了广义的概括或狭义的结论。推进土壤碳管理的科学和实践需要在中间尺度上取得科学进展。在此,我们对土地利用变化和森林管理对土壤碳储量的影响进行了生态区域评估系列中的第五次评估,这次评估的对象是美国东北部。我们采用了综合方法,包括(1)对已发表文献进行元分析;(2)土壤调查;(3)国家森林资源清查数据库,以研究毁林、再造林和森林采伐对土壤碳储量的总体影响和潜在驱动因素。三个互补数据源使我们能够量化趋势的方向、幅度和不确定性:我们的荟萃分析结果表明,无论是为了农业还是城市发展而砍伐森林,都会导致土壤碳储量的下降。相反,重新造林导致土壤碳储量显著增加,但因具体地理因素而异。森林采伐对土壤碳储量没有明显影响,与地点或具体实践因素无关。观察性土壤调查和国家森林资源清查数据总体上支持荟萃分析的采伐趋势,并通过揭示对这一碳密度土壤生态区土壤碳储量起基线控制作用的因素提供了更广泛的背景。这些因素包括一系列土壤物理、母质和地形控制因素,土地利用和气候因素也发挥了作用:结论:森林采伐在改变森林土壤碳储量方面的潜力有限,这与土地利用变化所带来的巨大变化形成鲜明对比。这些发现强调了了解中间尺度土壤碳储量变化的重要性,以及采用全土地方法管理土壤碳储量以减缓美国东北部气候变化的必要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Land use change and forest management effects on soil carbon stocks in the Northeast U.S.

Background

In most regions and ecosystems, soils are the largest terrestrial carbon pool. Their potential vulnerability to climate and land use change, management, and other drivers, along with soils’ ability to mitigate climate change through carbon sequestration, makes them important to carbon balance and management. To date, most studies of soil carbon management have been based at either large or site-specific scales, resulting in either broad generalizations or narrow conclusions, respectively. Advancing the science and practice of soil carbon management requires scientific progress at intermediate scales. Here, we conducted the fifth in a series of ecoregional assessments of the effects of land use change and forest management on soil carbon stocks, this time addressing the Northeast U.S. We used synthesis approaches including (1) meta-analysis of published literature, (2) soil survey and (3) national forest inventory databases to examine overall effects and underlying drivers of deforestation, reforestation, and forest harvesting on soil carbon stocks. The three complementary data sources allowed us to quantify direction, magnitude, and uncertainty in trends.

Results

Our meta-analysis findings revealed regionally consistent declines in soil carbon stocks due to deforestation, whether for agriculture or urban development. Conversely, reforestation led to significant increases in soil C stocks, with variation based on specific geographic factors. Forest harvesting showed no significant effect on soil carbon stocks, regardless of place-based or practice-specific factors. Observational soil survey and national forest inventory data generally supported meta-analytic harvest trends, and provided broader context by revealing the factors that act as baseline controls on soil carbon stocks in this ecoregion of carbon-dense soils. These factors include a range of soil physical, parent material, and topographic controls, with land use and climate factors also playing a role.

Conclusions

Forest harvesting has limited potential to alter forest soil C stocks in either direction, in contrast to the significant changes driven by land use shifts. These findings underscore the importance of understanding soil C changes at intermediate scales, and the need for an all-lands approach to managing soil carbon for climate change mitigation in the Northeast U.S.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Carbon Balance and Management
Carbon Balance and Management Environmental Science-Management, Monitoring, Policy and Law
CiteScore
7.60
自引率
0.00%
发文量
17
审稿时长
14 weeks
期刊介绍: Carbon Balance and Management is an open access, peer-reviewed online journal that encompasses all aspects of research aimed at developing a comprehensive policy relevant to the understanding of the global carbon cycle. The global carbon cycle involves important couplings between climate, atmospheric CO2 and the terrestrial and oceanic biospheres. The current transformation of the carbon cycle due to changes in climate and atmospheric composition is widely recognized as potentially dangerous for the biosphere and for the well-being of humankind, and therefore monitoring, understanding and predicting the evolution of the carbon cycle in the context of the whole biosphere (both terrestrial and marine) is a challenge to the scientific community. This demands interdisciplinary research and new approaches for studying geographical and temporal distributions of carbon pools and fluxes, control and feedback mechanisms of the carbon-climate system, points of intervention and windows of opportunity for managing the carbon-climate-human system. Carbon Balance and Management is a medium for researchers in the field to convey the results of their research across disciplinary boundaries. Through this dissemination of research, the journal aims to support the work of the Intergovernmental Panel for Climate Change (IPCC) and to provide governmental and non-governmental organizations with instantaneous access to continually emerging knowledge, including paradigm shifts and consensual views.
期刊最新文献
Urban land use optimization prediction considering carbon neutral development goals: a case study of Taihu Bay Core area in China Slowly getting there: a review of country experience on estimating emissions and removals from forest degradation Methane cycling in temperate forests Stand structure and Brazilian pine as key determinants of carbon stock in a subtropical Atlantic forest Carbon, climate, and natural disturbance: a review of mechanisms, challenges, and tools for understanding forest carbon stability in an uncertain future
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1