手性粒子在复杂噪声环境中的集体运动

IF 1.8 4区 物理与天体物理 Q4 CHEMISTRY, PHYSICAL The European Physical Journal E Pub Date : 2024-02-06 DOI:10.1140/epje/s10189-023-00403-6
Jun Huang, Zhi-Gang Shao
{"title":"手性粒子在复杂噪声环境中的集体运动","authors":"Jun Huang,&nbsp;Zhi-Gang Shao","doi":"10.1140/epje/s10189-023-00403-6","DOIUrl":null,"url":null,"abstract":"<p>Collective motion of chiral particles in complex noise environments is investigated based on the Vicsek model. In the model, we added chirality, along with complex noise, affecting particles clustering motion. Particles can only avoid noise interference in a specific channel, and this consideration is more realistic due to the complexity of the environment. Via simulations, we find that the channel proportion, <i>p</i>, critically influences chiral particle synchronization. Specifically, we observe a disorder-order transition at critical <span>\\(p_\\textrm{c}\\)</span>, only when <span>\\(p&gt;p_\\textrm{c}\\)</span>, the system can achieve global synchronization. Combined with our definition of spatial distribution parameter and observation of the model, the reason is that particles begin to escape from the noise region under the influence of complex noise. In addition, the value of <span>\\(p_\\textrm{c}\\)</span> increases linearly with velocity, while it decreases monotonically with the increase in chirality and interaction radius. Interestingly, an appropriate noise amplitude minimizes <span>\\(p_\\textrm{c}\\)</span>. Our findings may inspire novel strategies to manipulate self-propelled particles of distinct chirality to achieve desired spatial migration and global synchronization.\n</p>","PeriodicalId":790,"journal":{"name":"The European Physical Journal E","volume":"47 2","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Collective motion of chiral particles in complex noise environments\",\"authors\":\"Jun Huang,&nbsp;Zhi-Gang Shao\",\"doi\":\"10.1140/epje/s10189-023-00403-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Collective motion of chiral particles in complex noise environments is investigated based on the Vicsek model. In the model, we added chirality, along with complex noise, affecting particles clustering motion. Particles can only avoid noise interference in a specific channel, and this consideration is more realistic due to the complexity of the environment. Via simulations, we find that the channel proportion, <i>p</i>, critically influences chiral particle synchronization. Specifically, we observe a disorder-order transition at critical <span>\\\\(p_\\\\textrm{c}\\\\)</span>, only when <span>\\\\(p&gt;p_\\\\textrm{c}\\\\)</span>, the system can achieve global synchronization. Combined with our definition of spatial distribution parameter and observation of the model, the reason is that particles begin to escape from the noise region under the influence of complex noise. In addition, the value of <span>\\\\(p_\\\\textrm{c}\\\\)</span> increases linearly with velocity, while it decreases monotonically with the increase in chirality and interaction radius. Interestingly, an appropriate noise amplitude minimizes <span>\\\\(p_\\\\textrm{c}\\\\)</span>. Our findings may inspire novel strategies to manipulate self-propelled particles of distinct chirality to achieve desired spatial migration and global synchronization.\\n</p>\",\"PeriodicalId\":790,\"journal\":{\"name\":\"The European Physical Journal E\",\"volume\":\"47 2\",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-02-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The European Physical Journal E\",\"FirstCategoryId\":\"4\",\"ListUrlMain\":\"https://link.springer.com/article/10.1140/epje/s10189-023-00403-6\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The European Physical Journal E","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1140/epje/s10189-023-00403-6","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

基于 Vicsek 模型,研究了手性粒子在复杂噪声环境中的集群运动。在该模型中,我们加入了手性以及影响粒子集群运动的复杂噪声。粒子只能在特定通道中避免噪声干扰,由于环境的复杂性,这种考虑更为现实。通过模拟,我们发现通道比例 p 对手性粒子的同步性有重要影响。具体来说,我们观察到在临界[公式:见正文]处出现了无序阶跃,只有当[公式:见正文]时,系统才能实现全局同步。结合我们对空间分布参数的定义和对模型的观察,原因在于粒子在复杂噪声的影响下开始逃离噪声区。此外,[公式:见正文]的值随速度线性增加,而随手性和相互作用半径的增加单调减少。有趣的是,适当的噪声振幅能使[公式:见正文]最小化。我们的发现可能会启发我们采用新的策略来操纵具有不同手性的自推进粒子,以实现所需的空间迁移和全局同步。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Collective motion of chiral particles in complex noise environments

Collective motion of chiral particles in complex noise environments is investigated based on the Vicsek model. In the model, we added chirality, along with complex noise, affecting particles clustering motion. Particles can only avoid noise interference in a specific channel, and this consideration is more realistic due to the complexity of the environment. Via simulations, we find that the channel proportion, p, critically influences chiral particle synchronization. Specifically, we observe a disorder-order transition at critical \(p_\textrm{c}\), only when \(p>p_\textrm{c}\), the system can achieve global synchronization. Combined with our definition of spatial distribution parameter and observation of the model, the reason is that particles begin to escape from the noise region under the influence of complex noise. In addition, the value of \(p_\textrm{c}\) increases linearly with velocity, while it decreases monotonically with the increase in chirality and interaction radius. Interestingly, an appropriate noise amplitude minimizes \(p_\textrm{c}\). Our findings may inspire novel strategies to manipulate self-propelled particles of distinct chirality to achieve desired spatial migration and global synchronization.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
The European Physical Journal E
The European Physical Journal E CHEMISTRY, PHYSICAL-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
2.60
自引率
5.60%
发文量
92
审稿时长
3 months
期刊介绍: EPJ E publishes papers describing advances in the understanding of physical aspects of Soft, Liquid and Living Systems. Soft matter is a generic term for a large group of condensed, often heterogeneous systems -- often also called complex fluids -- that display a large response to weak external perturbations and that possess properties governed by slow internal dynamics. Flowing matter refers to all systems that can actually flow, from simple to multiphase liquids, from foams to granular matter. Living matter concerns the new physics that emerges from novel insights into the properties and behaviours of living systems. Furthermore, it aims at developing new concepts and quantitative approaches for the study of biological phenomena. Approaches from soft matter physics and statistical physics play a key role in this research. The journal includes reports of experimental, computational and theoretical studies and appeals to the broad interdisciplinary communities including physics, chemistry, biology, mathematics and materials science.
期刊最新文献
Modeling straight and circle swimmers: from single swimmer to collective motion Multibody interactions between protein inclusions in the pointlike curvature model for tense and tensionless membranes Research on sedimentation characteristics of squirmer in a power-law fluid Effect of repulsive interaction and initial velocity on collective motion process A structural determinant of the behavior of water at hydration and nanoconfinement conditions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1