Sewon Lee, Gyuri Kim, Eli Levy Karin, Milot Mirdita, Sukhwan Park, Rayan Chikhi, Artem Babaian, Andriy Kryshtafovych, Martin Steinegger
{"title":"用于结构预测的 Petabase 级同源搜索。","authors":"Sewon Lee, Gyuri Kim, Eli Levy Karin, Milot Mirdita, Sukhwan Park, Rayan Chikhi, Artem Babaian, Andriy Kryshtafovych, Martin Steinegger","doi":"10.1101/cshperspect.a041465","DOIUrl":null,"url":null,"abstract":"<p><p>The recent CASP15 competition highlighted the critical role of multiple sequence alignments (MSAs) in protein structure prediction, as demonstrated by the success of the top AlphaFold2-based prediction methods. To push the boundaries of MSA utilization, we conducted a petabase-scale search of the Sequence Read Archive (SRA), resulting in gigabytes of aligned homologs for CASP15 targets. These were merged with default MSAs produced by ColabFold-search and provided to ColabFold-predict. By using SRA data, we achieved highly accurate predictions (GDT_TS > 70) for 66% of the non-easy targets, whereas using ColabFold-search default MSAs scored highly in only 52%. Next, we tested the effect of deep homology search and ColabFold's advanced features, such as more recycles, on prediction accuracy. While SRA homologs were most significant for improving ColabFold's CASP15 ranking from 11th to 3rd place, other strategies contributed too. We analyze these in the context of existing strategies to improve prediction.</p>","PeriodicalId":10494,"journal":{"name":"Cold Spring Harbor perspectives in biology","volume":null,"pages":null},"PeriodicalIF":6.9000,"publicationDate":"2024-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11065157/pdf/","citationCount":"0","resultStr":"{\"title\":\"Petabase-Scale Homology Search for Structure Prediction.\",\"authors\":\"Sewon Lee, Gyuri Kim, Eli Levy Karin, Milot Mirdita, Sukhwan Park, Rayan Chikhi, Artem Babaian, Andriy Kryshtafovych, Martin Steinegger\",\"doi\":\"10.1101/cshperspect.a041465\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The recent CASP15 competition highlighted the critical role of multiple sequence alignments (MSAs) in protein structure prediction, as demonstrated by the success of the top AlphaFold2-based prediction methods. To push the boundaries of MSA utilization, we conducted a petabase-scale search of the Sequence Read Archive (SRA), resulting in gigabytes of aligned homologs for CASP15 targets. These were merged with default MSAs produced by ColabFold-search and provided to ColabFold-predict. By using SRA data, we achieved highly accurate predictions (GDT_TS > 70) for 66% of the non-easy targets, whereas using ColabFold-search default MSAs scored highly in only 52%. Next, we tested the effect of deep homology search and ColabFold's advanced features, such as more recycles, on prediction accuracy. While SRA homologs were most significant for improving ColabFold's CASP15 ranking from 11th to 3rd place, other strategies contributed too. We analyze these in the context of existing strategies to improve prediction.</p>\",\"PeriodicalId\":10494,\"journal\":{\"name\":\"Cold Spring Harbor perspectives in biology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":6.9000,\"publicationDate\":\"2024-05-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11065157/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cold Spring Harbor perspectives in biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1101/cshperspect.a041465\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cold Spring Harbor perspectives in biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1101/cshperspect.a041465","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
Petabase-Scale Homology Search for Structure Prediction.
The recent CASP15 competition highlighted the critical role of multiple sequence alignments (MSAs) in protein structure prediction, as demonstrated by the success of the top AlphaFold2-based prediction methods. To push the boundaries of MSA utilization, we conducted a petabase-scale search of the Sequence Read Archive (SRA), resulting in gigabytes of aligned homologs for CASP15 targets. These were merged with default MSAs produced by ColabFold-search and provided to ColabFold-predict. By using SRA data, we achieved highly accurate predictions (GDT_TS > 70) for 66% of the non-easy targets, whereas using ColabFold-search default MSAs scored highly in only 52%. Next, we tested the effect of deep homology search and ColabFold's advanced features, such as more recycles, on prediction accuracy. While SRA homologs were most significant for improving ColabFold's CASP15 ranking from 11th to 3rd place, other strategies contributed too. We analyze these in the context of existing strategies to improve prediction.
期刊介绍:
Cold Spring Harbor Perspectives in Biology offers a comprehensive platform in the molecular life sciences, featuring reviews that span molecular, cell, and developmental biology, genetics, neuroscience, immunology, cancer biology, and molecular pathology. This online publication provides in-depth insights into various topics, making it a valuable resource for those engaged in diverse aspects of biological research.