{"title":"[术中光学相干断层扫描引导精确角膜缝合术治疗急性角膜炎]。","authors":"S X Li, N Wang, M Su, X Y Jiang, H Gao, W Y Shi","doi":"10.3760/cma.j.cn112142-20231016-00145","DOIUrl":null,"url":null,"abstract":"<p><p><b>Objective:</b> This study aimed to observe the clinical efficacy of precise suturing of posterior elastic layer fissures guided by intraoperative optical coherence tomography (OCT) in conjunction with anterior chamber puncture and drainage, and corneal thermokeratoplasty for the treatment of severe acute edematous keratoconus. <b>Methods:</b> Non-randomized controlled trial. Data were collected for a study involving 31 cases of acute edematous keratoconus patients who underwent surgical treatment at the Shandong Eye Hospital between June 2017 and July 2021. Among them, there were 30 male and 1 female patients, with an age range of 11 to 32 years and a mean age of (19.80±5.80) years. Eighteen patients in the study group underwent precise suturing of posterior elastic layer fissures guided by intraoperative OCT, in combination with anterior chamber puncture and drainage, and corneal thermokeratoplasty. Thirteen patients in the control group did not undergo suturing. Preoperative visual acuity, corneal edema diameter, corneal thickness, and posterior elastic layer fissure length were collected. Evaluation was performed using slit lamp microscopy, anterior segment OCT, and other methods to assess the time of initial postoperative corneal edema resolution and closure of the posterior elastic layer fissure. Deep lamellar keratoplasty was performed 2 to 4 weeks after edema resolution, and the corneal bed scar repair and visual acuity of the two groups were compared. <b>Results:</b> In the suturing group, the corneas of all 18 patients were accurately sutured to the deep stromal layer near the posterior elastic layer. The time for corneal edema resolution was 2.50 (1.00, 6.25) days in the suturing group and 7.00 (6.00, 10.50) days in the control group. The fissure healing time was 7.50 (7.00, 12.00) days in the suturing group and 14.00 (9.00, 14.00) days in the control group. The differences were statistically significant (all <i>P</i><0.05). After 2 weeks, the central corneal thickness decreased to (529.80±174.50) μm in the suturing group and (612.00±205.12) μm in the control group. The suturing group showed accurate corneal suturing to the deep stromal layer near the posterior elastic layer, resulting in central corneal flattening, closure of voids in the stroma, and a significant decrease in corneal thickness. All 18 patients in the suturing group successfully completed deep lamellar keratoplasty, with 6 cases (6/18) experiencing mild graft bed leakage during surgery but without affecting the deep lamellar keratoplasty. One year postoperatively, the visual acuity (logarithm of the minimum resolution angle) was 0.23±0.12 in the suturing group and 0.33±0.11 in the control group, with a statistically significant difference (<i>P</i><0.05). <b>Conclusions:</b> In the treatment of severe acute edematous keratoconus, precise suturing of posterior elastic layer fissures guided by intraoperative OCT, in conjunction with anterior chamber puncture and drainage, and corneal thermokeratoplasty, can rapidly alleviate corneal edema and promote the healing of posterior elastic layer fissures. This approach achieves better visual outcomes for subsequent lamellar keratoplasty surgeries. The use of intraoperative OCT guidance allows accurate positioning of the posterior elastic layer fissure in terms of location, direction, and depth of corneal stromal voids, thereby assisting surgeons in precise suturing.</p>","PeriodicalId":39688,"journal":{"name":"中华眼科杂志","volume":"60 2","pages":"147-155"},"PeriodicalIF":0.0000,"publicationDate":"2024-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"[Intraoperative optical coherence tomography guided precise corneal suture in the treatment of acute keratoconus].\",\"authors\":\"S X Li, N Wang, M Su, X Y Jiang, H Gao, W Y Shi\",\"doi\":\"10.3760/cma.j.cn112142-20231016-00145\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p><b>Objective:</b> This study aimed to observe the clinical efficacy of precise suturing of posterior elastic layer fissures guided by intraoperative optical coherence tomography (OCT) in conjunction with anterior chamber puncture and drainage, and corneal thermokeratoplasty for the treatment of severe acute edematous keratoconus. <b>Methods:</b> Non-randomized controlled trial. Data were collected for a study involving 31 cases of acute edematous keratoconus patients who underwent surgical treatment at the Shandong Eye Hospital between June 2017 and July 2021. Among them, there were 30 male and 1 female patients, with an age range of 11 to 32 years and a mean age of (19.80±5.80) years. Eighteen patients in the study group underwent precise suturing of posterior elastic layer fissures guided by intraoperative OCT, in combination with anterior chamber puncture and drainage, and corneal thermokeratoplasty. Thirteen patients in the control group did not undergo suturing. Preoperative visual acuity, corneal edema diameter, corneal thickness, and posterior elastic layer fissure length were collected. Evaluation was performed using slit lamp microscopy, anterior segment OCT, and other methods to assess the time of initial postoperative corneal edema resolution and closure of the posterior elastic layer fissure. Deep lamellar keratoplasty was performed 2 to 4 weeks after edema resolution, and the corneal bed scar repair and visual acuity of the two groups were compared. <b>Results:</b> In the suturing group, the corneas of all 18 patients were accurately sutured to the deep stromal layer near the posterior elastic layer. The time for corneal edema resolution was 2.50 (1.00, 6.25) days in the suturing group and 7.00 (6.00, 10.50) days in the control group. The fissure healing time was 7.50 (7.00, 12.00) days in the suturing group and 14.00 (9.00, 14.00) days in the control group. The differences were statistically significant (all <i>P</i><0.05). After 2 weeks, the central corneal thickness decreased to (529.80±174.50) μm in the suturing group and (612.00±205.12) μm in the control group. The suturing group showed accurate corneal suturing to the deep stromal layer near the posterior elastic layer, resulting in central corneal flattening, closure of voids in the stroma, and a significant decrease in corneal thickness. All 18 patients in the suturing group successfully completed deep lamellar keratoplasty, with 6 cases (6/18) experiencing mild graft bed leakage during surgery but without affecting the deep lamellar keratoplasty. One year postoperatively, the visual acuity (logarithm of the minimum resolution angle) was 0.23±0.12 in the suturing group and 0.33±0.11 in the control group, with a statistically significant difference (<i>P</i><0.05). <b>Conclusions:</b> In the treatment of severe acute edematous keratoconus, precise suturing of posterior elastic layer fissures guided by intraoperative OCT, in conjunction with anterior chamber puncture and drainage, and corneal thermokeratoplasty, can rapidly alleviate corneal edema and promote the healing of posterior elastic layer fissures. This approach achieves better visual outcomes for subsequent lamellar keratoplasty surgeries. The use of intraoperative OCT guidance allows accurate positioning of the posterior elastic layer fissure in terms of location, direction, and depth of corneal stromal voids, thereby assisting surgeons in precise suturing.</p>\",\"PeriodicalId\":39688,\"journal\":{\"name\":\"中华眼科杂志\",\"volume\":\"60 2\",\"pages\":\"147-155\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-02-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"中华眼科杂志\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.3760/cma.j.cn112142-20231016-00145\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"中华眼科杂志","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3760/cma.j.cn112142-20231016-00145","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0
摘要
研究目的本研究旨在观察在术中光学相干断层扫描(OCT)引导下精确缝合后弹力层裂隙、前房穿刺引流和角膜热角膜成形术治疗严重急性水肿性角膜炎的临床疗效。方法:非随机对照试验:非随机对照试验。收集2017年6月至2021年7月期间在山东省眼科医院接受手术治疗的31例急性水肿性角膜炎患者的研究数据。其中,男性患者30例,女性患者1例,年龄范围为11~32岁,平均年龄为(19.80±5.80)岁。研究组的18名患者在术中OCT的引导下进行了后弹力层裂隙精确缝合,同时进行了前房穿刺引流和角膜热角膜成形术。对照组的 13 名患者没有进行缝合。收集术前视力、角膜水肿直径、角膜厚度和后弹力层裂隙长度。使用裂隙灯显微镜、前节 OCT 和其他方法进行评估,以确定术后角膜水肿消退和后弹力层裂隙闭合的初始时间。水肿消退后 2 至 4 周进行深板层角膜移植术,比较两组患者的角膜床瘢痕修复情况和视力。结果:在缝合组中,所有18名患者的角膜都准确地缝合到了后弹力层附近的深基质层。缝合组角膜水肿消退时间为 2.50(1.00,6.25)天,对照组为 7.00(6.00,10.50)天。缝合组的裂口愈合时间为 7.50(7.00,12.00)天,对照组为 14.00(9.00,14.00)天。差异具有统计学意义(所有 PPConclusions:在治疗严重急性水肿性角膜炎时,在术中 OCT 引导下精确缝合后弹力层裂隙,同时进行前房穿刺引流和角膜热角膜成形术,可迅速缓解角膜水肿,促进后弹力层裂隙愈合。这种方法可为后续的板层角膜移植手术带来更好的视觉效果。术中使用 OCT 引导可以准确定位后弹力层裂隙的位置、方向和角膜基质空隙的深度,从而帮助外科医生进行精确缝合。
[Intraoperative optical coherence tomography guided precise corneal suture in the treatment of acute keratoconus].
Objective: This study aimed to observe the clinical efficacy of precise suturing of posterior elastic layer fissures guided by intraoperative optical coherence tomography (OCT) in conjunction with anterior chamber puncture and drainage, and corneal thermokeratoplasty for the treatment of severe acute edematous keratoconus. Methods: Non-randomized controlled trial. Data were collected for a study involving 31 cases of acute edematous keratoconus patients who underwent surgical treatment at the Shandong Eye Hospital between June 2017 and July 2021. Among them, there were 30 male and 1 female patients, with an age range of 11 to 32 years and a mean age of (19.80±5.80) years. Eighteen patients in the study group underwent precise suturing of posterior elastic layer fissures guided by intraoperative OCT, in combination with anterior chamber puncture and drainage, and corneal thermokeratoplasty. Thirteen patients in the control group did not undergo suturing. Preoperative visual acuity, corneal edema diameter, corneal thickness, and posterior elastic layer fissure length were collected. Evaluation was performed using slit lamp microscopy, anterior segment OCT, and other methods to assess the time of initial postoperative corneal edema resolution and closure of the posterior elastic layer fissure. Deep lamellar keratoplasty was performed 2 to 4 weeks after edema resolution, and the corneal bed scar repair and visual acuity of the two groups were compared. Results: In the suturing group, the corneas of all 18 patients were accurately sutured to the deep stromal layer near the posterior elastic layer. The time for corneal edema resolution was 2.50 (1.00, 6.25) days in the suturing group and 7.00 (6.00, 10.50) days in the control group. The fissure healing time was 7.50 (7.00, 12.00) days in the suturing group and 14.00 (9.00, 14.00) days in the control group. The differences were statistically significant (all P<0.05). After 2 weeks, the central corneal thickness decreased to (529.80±174.50) μm in the suturing group and (612.00±205.12) μm in the control group. The suturing group showed accurate corneal suturing to the deep stromal layer near the posterior elastic layer, resulting in central corneal flattening, closure of voids in the stroma, and a significant decrease in corneal thickness. All 18 patients in the suturing group successfully completed deep lamellar keratoplasty, with 6 cases (6/18) experiencing mild graft bed leakage during surgery but without affecting the deep lamellar keratoplasty. One year postoperatively, the visual acuity (logarithm of the minimum resolution angle) was 0.23±0.12 in the suturing group and 0.33±0.11 in the control group, with a statistically significant difference (P<0.05). Conclusions: In the treatment of severe acute edematous keratoconus, precise suturing of posterior elastic layer fissures guided by intraoperative OCT, in conjunction with anterior chamber puncture and drainage, and corneal thermokeratoplasty, can rapidly alleviate corneal edema and promote the healing of posterior elastic layer fissures. This approach achieves better visual outcomes for subsequent lamellar keratoplasty surgeries. The use of intraoperative OCT guidance allows accurate positioning of the posterior elastic layer fissure in terms of location, direction, and depth of corneal stromal voids, thereby assisting surgeons in precise suturing.