{"title":"以直孔跟踪蚀刻膜为薄基材,制造聚酰胺正向渗透膜","authors":"Alena Popova, Takuji Shintani, Takahiro Fujioka","doi":"10.1016/j.memlet.2024.100068","DOIUrl":null,"url":null,"abstract":"<div><p>Controlling the internal concentration polarization in forward osmosis (FO) membranes by minimizing the substrate thickness is critical to enhancing the water flux. This study aimed to achieve the fabrication of an ultra-thin FO membrane by forming the polyamide (PA) active layer on a thin and straight-bore film, a so-called track-etched (TE) membrane. The polycarbonate TE membrane had a uniform pore size of 0.22 µm and a thickness of 25 µm. The PA active layer was successfully formed only by creating a thin <em>m</em>-phenylenediamine solution layer on the smooth TE membrane surface before interfacial polymerization. The TE- FO membrane with low porosity (14 %) provided a water flux of 21 L/m<sup>2</sup>h and a reverse salt flux of 8.0 g/m<sup>2</sup>h when evaluated with a 1.0 M NaCl draw solution. Further evaluations showed the potential of increasing water flux by increasing the TE substrate porosity (14 %) and reducing the apparent PA active layer thickness (504 nm). These results suggest the potential of achieving a high-water flux FO membrane using a thin TE substrate and ultimately improving the validity of FO membrane-based water treatment.</p></div>","PeriodicalId":100805,"journal":{"name":"Journal of Membrane Science Letters","volume":"4 1","pages":"Article 100068"},"PeriodicalIF":4.9000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772421224000023/pdfft?md5=428b6b857a7cb97165ccbd9306256b38&pid=1-s2.0-S2772421224000023-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Track-etched membrane as a thin substrate with straight pores to fabricate polyamide forward osmosis membrane\",\"authors\":\"Alena Popova, Takuji Shintani, Takahiro Fujioka\",\"doi\":\"10.1016/j.memlet.2024.100068\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Controlling the internal concentration polarization in forward osmosis (FO) membranes by minimizing the substrate thickness is critical to enhancing the water flux. This study aimed to achieve the fabrication of an ultra-thin FO membrane by forming the polyamide (PA) active layer on a thin and straight-bore film, a so-called track-etched (TE) membrane. The polycarbonate TE membrane had a uniform pore size of 0.22 µm and a thickness of 25 µm. The PA active layer was successfully formed only by creating a thin <em>m</em>-phenylenediamine solution layer on the smooth TE membrane surface before interfacial polymerization. The TE- FO membrane with low porosity (14 %) provided a water flux of 21 L/m<sup>2</sup>h and a reverse salt flux of 8.0 g/m<sup>2</sup>h when evaluated with a 1.0 M NaCl draw solution. Further evaluations showed the potential of increasing water flux by increasing the TE substrate porosity (14 %) and reducing the apparent PA active layer thickness (504 nm). These results suggest the potential of achieving a high-water flux FO membrane using a thin TE substrate and ultimately improving the validity of FO membrane-based water treatment.</p></div>\",\"PeriodicalId\":100805,\"journal\":{\"name\":\"Journal of Membrane Science Letters\",\"volume\":\"4 1\",\"pages\":\"Article 100068\"},\"PeriodicalIF\":4.9000,\"publicationDate\":\"2024-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2772421224000023/pdfft?md5=428b6b857a7cb97165ccbd9306256b38&pid=1-s2.0-S2772421224000023-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Membrane Science Letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2772421224000023\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Membrane Science Letters","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772421224000023","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
摘要
通过尽量减小基材厚度来控制正渗透(FO)膜的内部浓度极化对提高水通量至关重要。本研究旨在通过在薄直孔膜上形成聚酰胺(PA)活性层,即所谓的跟踪蚀刻(TE)膜,来实现超薄 FO 膜的制造。聚碳酸酯 TE 膜的均匀孔径为 0.22 微米,厚度为 25 微米。只有在界面聚合之前在光滑的 TE 膜表面形成薄薄的间苯二胺溶液层,才能成功形成 PA 活性层。在使用 1.0 M NaCl 溶液进行评估时,低孔隙率(14%)的 TE- FO 膜提供了 21 L/m2h 的水通量和 8.0 g/m2h 的反向盐通量。进一步的评估表明,通过增加 TE 基底孔隙率(14%)和减少表观 PA 活性层厚度(504 纳米),有可能提高水通量。这些结果表明,使用薄的 TE 基底有可能获得高水通量的 FO 膜,并最终提高基于 FO 膜的水处理的有效性。
Track-etched membrane as a thin substrate with straight pores to fabricate polyamide forward osmosis membrane
Controlling the internal concentration polarization in forward osmosis (FO) membranes by minimizing the substrate thickness is critical to enhancing the water flux. This study aimed to achieve the fabrication of an ultra-thin FO membrane by forming the polyamide (PA) active layer on a thin and straight-bore film, a so-called track-etched (TE) membrane. The polycarbonate TE membrane had a uniform pore size of 0.22 µm and a thickness of 25 µm. The PA active layer was successfully formed only by creating a thin m-phenylenediamine solution layer on the smooth TE membrane surface before interfacial polymerization. The TE- FO membrane with low porosity (14 %) provided a water flux of 21 L/m2h and a reverse salt flux of 8.0 g/m2h when evaluated with a 1.0 M NaCl draw solution. Further evaluations showed the potential of increasing water flux by increasing the TE substrate porosity (14 %) and reducing the apparent PA active layer thickness (504 nm). These results suggest the potential of achieving a high-water flux FO membrane using a thin TE substrate and ultimately improving the validity of FO membrane-based water treatment.