{"title":"延长基于智能逆变器的分布式太阳能光伏系统的配电变压器寿命","authors":"Kanhaiya Kumar;Saran Satsangi;Ganesh Balu Kumbhar","doi":"10.17775/CSEEJPES.2022.06060","DOIUrl":null,"url":null,"abstract":"A transformer is an essential but expensive power delivery equipment for a distribution utility. In many distribution utilities worldwide, a sizable percentage of transformers are near the end of their designed life. At the same time, distribution utilities are adopting smart inverter-based distributed solar photovoltaic (SPV) systems to maximize renewable generation. The central objective of this paper is to propose a methodology to quantify the effect of smart inverter-based distributed SPV systems on the aging of distribution transformers. The proposed method is first tested on a modified IEEE-123 node distribution feeder. After that, the procedure is applied to a practical distribution system, i.e., the Indian Institute of Technology (IIT) Roorkee campus, India. The transformer aging models, alongside advanced control functionalities of grid-tied smart inverter-based SPV systems, are implemented in MATLAB. The open-source simulation tool (OpenDSS) is used to model distribution net-works. To analyze effectiveness of various inverter functionalities, time-series simulations are performed using exponential load models, considering daily load curves from multiple seasons, load types, current harmonics, etc. Findings show replacing a traditional inverter with a smart inverter-based SPV system can enable local reactive power generation and may extend the life of a distribution transformer. Simulation results demonstrate, simply by incorporating smart inverter-based SPV systems, transformer aging is reduced by 15% to 22% in comparison to SPV systems operating with traditional inverters.","PeriodicalId":10729,"journal":{"name":"CSEE Journal of Power and Energy Systems","volume":"10 1","pages":"88-95"},"PeriodicalIF":6.9000,"publicationDate":"2023-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10322702","citationCount":"0","resultStr":"{\"title\":\"Extension of Distribution Transformer Life in the Presence of Smart Inverter-based Distributed Solar Photovoltaic Systems\",\"authors\":\"Kanhaiya Kumar;Saran Satsangi;Ganesh Balu Kumbhar\",\"doi\":\"10.17775/CSEEJPES.2022.06060\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A transformer is an essential but expensive power delivery equipment for a distribution utility. In many distribution utilities worldwide, a sizable percentage of transformers are near the end of their designed life. At the same time, distribution utilities are adopting smart inverter-based distributed solar photovoltaic (SPV) systems to maximize renewable generation. The central objective of this paper is to propose a methodology to quantify the effect of smart inverter-based distributed SPV systems on the aging of distribution transformers. The proposed method is first tested on a modified IEEE-123 node distribution feeder. After that, the procedure is applied to a practical distribution system, i.e., the Indian Institute of Technology (IIT) Roorkee campus, India. The transformer aging models, alongside advanced control functionalities of grid-tied smart inverter-based SPV systems, are implemented in MATLAB. The open-source simulation tool (OpenDSS) is used to model distribution net-works. To analyze effectiveness of various inverter functionalities, time-series simulations are performed using exponential load models, considering daily load curves from multiple seasons, load types, current harmonics, etc. Findings show replacing a traditional inverter with a smart inverter-based SPV system can enable local reactive power generation and may extend the life of a distribution transformer. Simulation results demonstrate, simply by incorporating smart inverter-based SPV systems, transformer aging is reduced by 15% to 22% in comparison to SPV systems operating with traditional inverters.\",\"PeriodicalId\":10729,\"journal\":{\"name\":\"CSEE Journal of Power and Energy Systems\",\"volume\":\"10 1\",\"pages\":\"88-95\"},\"PeriodicalIF\":6.9000,\"publicationDate\":\"2023-11-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10322702\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"CSEE Journal of Power and Energy Systems\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10322702/\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"CSEE Journal of Power and Energy Systems","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10322702/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
Extension of Distribution Transformer Life in the Presence of Smart Inverter-based Distributed Solar Photovoltaic Systems
A transformer is an essential but expensive power delivery equipment for a distribution utility. In many distribution utilities worldwide, a sizable percentage of transformers are near the end of their designed life. At the same time, distribution utilities are adopting smart inverter-based distributed solar photovoltaic (SPV) systems to maximize renewable generation. The central objective of this paper is to propose a methodology to quantify the effect of smart inverter-based distributed SPV systems on the aging of distribution transformers. The proposed method is first tested on a modified IEEE-123 node distribution feeder. After that, the procedure is applied to a practical distribution system, i.e., the Indian Institute of Technology (IIT) Roorkee campus, India. The transformer aging models, alongside advanced control functionalities of grid-tied smart inverter-based SPV systems, are implemented in MATLAB. The open-source simulation tool (OpenDSS) is used to model distribution net-works. To analyze effectiveness of various inverter functionalities, time-series simulations are performed using exponential load models, considering daily load curves from multiple seasons, load types, current harmonics, etc. Findings show replacing a traditional inverter with a smart inverter-based SPV system can enable local reactive power generation and may extend the life of a distribution transformer. Simulation results demonstrate, simply by incorporating smart inverter-based SPV systems, transformer aging is reduced by 15% to 22% in comparison to SPV systems operating with traditional inverters.
期刊介绍:
The CSEE Journal of Power and Energy Systems (JPES) is an international bimonthly journal published by the Chinese Society for Electrical Engineering (CSEE) in collaboration with CEPRI (China Electric Power Research Institute) and IEEE (The Institute of Electrical and Electronics Engineers) Inc. Indexed by SCI, Scopus, INSPEC, CSAD (Chinese Science Abstracts Database), DOAJ, and ProQuest, it serves as a platform for reporting cutting-edge theories, methods, technologies, and applications shaping the development of power systems in energy transition. The journal offers authors an international platform to enhance the reach and impact of their contributions.