{"title":"发电机跳闸方案的智能预测:基于知识融合的深度强化学习框架","authors":"Lingkang Zeng;Wei Yao;Ze Hu;Hang Shuai;Zhouping Li;Jinyu Wen;Shijie Cheng","doi":"10.17775/CSEEJPES.2022.08970","DOIUrl":null,"url":null,"abstract":"Generator tripping scheme (GTS) is the most commonly used scheme to prevent power systems from losing safety and stability. Usually, GTS is composed of offline predetermination and real-time scenario match. However, it is extremely time-consuming and labor-intensive for manual predetermination for a large-scale modern power system. To improve efficiency of predetermination, this paper proposes a framework of knowledge fusion-based deep reinforcement learning (KF-DRL) for intelligent predetermination of GTS. First, the Markov Decision Process (MDP) for GTS problem is formulated based on transient instability events. Then, linear action space is developed to reduce dimensionality of action space for multiple controllable generators. Especially, KF-DRL leverages domain knowledge about GTS to mask invalid actions during the decision-making process. This can enhance the efficiency and learning process. Moreover, the graph convolutional network (GCN) is introduced to the policy network for enhanced learning ability. Numerical simulation results obtained on New England power system demonstrate superiority of the proposed KF-DRL framework for GTS over the purely data-driven DRL method.","PeriodicalId":10729,"journal":{"name":"CSEE Journal of Power and Energy Systems","volume":"10 1","pages":"66-75"},"PeriodicalIF":6.9000,"publicationDate":"2023-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10375964","citationCount":"0","resultStr":"{\"title\":\"Intelligent Predetermination of Generator Tripping Scheme: Knowledge Fusion-based Deep Reinforcement Learning Framework\",\"authors\":\"Lingkang Zeng;Wei Yao;Ze Hu;Hang Shuai;Zhouping Li;Jinyu Wen;Shijie Cheng\",\"doi\":\"10.17775/CSEEJPES.2022.08970\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Generator tripping scheme (GTS) is the most commonly used scheme to prevent power systems from losing safety and stability. Usually, GTS is composed of offline predetermination and real-time scenario match. However, it is extremely time-consuming and labor-intensive for manual predetermination for a large-scale modern power system. To improve efficiency of predetermination, this paper proposes a framework of knowledge fusion-based deep reinforcement learning (KF-DRL) for intelligent predetermination of GTS. First, the Markov Decision Process (MDP) for GTS problem is formulated based on transient instability events. Then, linear action space is developed to reduce dimensionality of action space for multiple controllable generators. Especially, KF-DRL leverages domain knowledge about GTS to mask invalid actions during the decision-making process. This can enhance the efficiency and learning process. Moreover, the graph convolutional network (GCN) is introduced to the policy network for enhanced learning ability. Numerical simulation results obtained on New England power system demonstrate superiority of the proposed KF-DRL framework for GTS over the purely data-driven DRL method.\",\"PeriodicalId\":10729,\"journal\":{\"name\":\"CSEE Journal of Power and Energy Systems\",\"volume\":\"10 1\",\"pages\":\"66-75\"},\"PeriodicalIF\":6.9000,\"publicationDate\":\"2023-12-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10375964\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"CSEE Journal of Power and Energy Systems\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10375964/\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"CSEE Journal of Power and Energy Systems","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10375964/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
Intelligent Predetermination of Generator Tripping Scheme: Knowledge Fusion-based Deep Reinforcement Learning Framework
Generator tripping scheme (GTS) is the most commonly used scheme to prevent power systems from losing safety and stability. Usually, GTS is composed of offline predetermination and real-time scenario match. However, it is extremely time-consuming and labor-intensive for manual predetermination for a large-scale modern power system. To improve efficiency of predetermination, this paper proposes a framework of knowledge fusion-based deep reinforcement learning (KF-DRL) for intelligent predetermination of GTS. First, the Markov Decision Process (MDP) for GTS problem is formulated based on transient instability events. Then, linear action space is developed to reduce dimensionality of action space for multiple controllable generators. Especially, KF-DRL leverages domain knowledge about GTS to mask invalid actions during the decision-making process. This can enhance the efficiency and learning process. Moreover, the graph convolutional network (GCN) is introduced to the policy network for enhanced learning ability. Numerical simulation results obtained on New England power system demonstrate superiority of the proposed KF-DRL framework for GTS over the purely data-driven DRL method.
期刊介绍:
The CSEE Journal of Power and Energy Systems (JPES) is an international bimonthly journal published by the Chinese Society for Electrical Engineering (CSEE) in collaboration with CEPRI (China Electric Power Research Institute) and IEEE (The Institute of Electrical and Electronics Engineers) Inc. Indexed by SCI, Scopus, INSPEC, CSAD (Chinese Science Abstracts Database), DOAJ, and ProQuest, it serves as a platform for reporting cutting-edge theories, methods, technologies, and applications shaping the development of power systems in energy transition. The journal offers authors an international platform to enhance the reach and impact of their contributions.