{"title":"利用配电网络中的虚拟注入电流比和两阶段恢复策略定位非对称接地故障","authors":"Haiting Shan;Luliang Zhang;Q. H. Wu;Mengshi Li","doi":"10.17775/CSEEJPES.2021.07900","DOIUrl":null,"url":null,"abstract":"Sparse measurements challenge fault location in distribution networks. This paper proposes a method for asymmetric ground fault location in distribution networks with limited measurements. A virtual injected current vector is formulated to estimate the fault line, which can be reconstructed from voltage sags measured at a few buses using compressive sensing (CS). The relationship between the virtual injected current ratio (VICR) and fault position is deduced from circuit analysis to pinpoint the fault. Furthermore, a two-stage recovery strategy is proposed for improving reconstruction accuracy of the current vector, where two different sensing matrixes are utilized to improve the incoherence. The proposed method is validated in IEEE 34 node test feeder. Simulation results show asymmetric ground fault type, resistance, fault position and access of distributed generators (DGs) do not significantly influence performance of our method. In addition, it works effectively under various scenarios of noisy measurement and line parameter error. Validations on 134 node test feeders prove the proposed method is also suitable for systems with more complex structure.","PeriodicalId":10729,"journal":{"name":"CSEE Journal of Power and Energy Systems","volume":"10 1","pages":"151-161"},"PeriodicalIF":6.9000,"publicationDate":"2023-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10322703","citationCount":"0","resultStr":"{\"title\":\"Location of Asymmetric Ground Fault Using Virtual Injected Current Ratio and Two-stage Recovery Strategy in Distribution Networks\",\"authors\":\"Haiting Shan;Luliang Zhang;Q. H. Wu;Mengshi Li\",\"doi\":\"10.17775/CSEEJPES.2021.07900\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Sparse measurements challenge fault location in distribution networks. This paper proposes a method for asymmetric ground fault location in distribution networks with limited measurements. A virtual injected current vector is formulated to estimate the fault line, which can be reconstructed from voltage sags measured at a few buses using compressive sensing (CS). The relationship between the virtual injected current ratio (VICR) and fault position is deduced from circuit analysis to pinpoint the fault. Furthermore, a two-stage recovery strategy is proposed for improving reconstruction accuracy of the current vector, where two different sensing matrixes are utilized to improve the incoherence. The proposed method is validated in IEEE 34 node test feeder. Simulation results show asymmetric ground fault type, resistance, fault position and access of distributed generators (DGs) do not significantly influence performance of our method. In addition, it works effectively under various scenarios of noisy measurement and line parameter error. Validations on 134 node test feeders prove the proposed method is also suitable for systems with more complex structure.\",\"PeriodicalId\":10729,\"journal\":{\"name\":\"CSEE Journal of Power and Energy Systems\",\"volume\":\"10 1\",\"pages\":\"151-161\"},\"PeriodicalIF\":6.9000,\"publicationDate\":\"2023-11-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10322703\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"CSEE Journal of Power and Energy Systems\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10322703/\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"CSEE Journal of Power and Energy Systems","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10322703/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
Location of Asymmetric Ground Fault Using Virtual Injected Current Ratio and Two-stage Recovery Strategy in Distribution Networks
Sparse measurements challenge fault location in distribution networks. This paper proposes a method for asymmetric ground fault location in distribution networks with limited measurements. A virtual injected current vector is formulated to estimate the fault line, which can be reconstructed from voltage sags measured at a few buses using compressive sensing (CS). The relationship between the virtual injected current ratio (VICR) and fault position is deduced from circuit analysis to pinpoint the fault. Furthermore, a two-stage recovery strategy is proposed for improving reconstruction accuracy of the current vector, where two different sensing matrixes are utilized to improve the incoherence. The proposed method is validated in IEEE 34 node test feeder. Simulation results show asymmetric ground fault type, resistance, fault position and access of distributed generators (DGs) do not significantly influence performance of our method. In addition, it works effectively under various scenarios of noisy measurement and line parameter error. Validations on 134 node test feeders prove the proposed method is also suitable for systems with more complex structure.
期刊介绍:
The CSEE Journal of Power and Energy Systems (JPES) is an international bimonthly journal published by the Chinese Society for Electrical Engineering (CSEE) in collaboration with CEPRI (China Electric Power Research Institute) and IEEE (The Institute of Electrical and Electronics Engineers) Inc. Indexed by SCI, Scopus, INSPEC, CSAD (Chinese Science Abstracts Database), DOAJ, and ProQuest, it serves as a platform for reporting cutting-edge theories, methods, technologies, and applications shaping the development of power systems in energy transition. The journal offers authors an international platform to enhance the reach and impact of their contributions.