{"title":"SPIONs:基于超顺磁性氧化铁的纳米粒子,用于在癌症中输送微 RNAi 治疗药物。","authors":"Goknur Kara, Bulent Ozpolat","doi":"10.1007/s10544-024-00698-y","DOIUrl":null,"url":null,"abstract":"<div><p>Non-coding RNA (ncRNA)-based therapeutics that induce RNA interference (RNAi), such as microRNAs (miRNAs), have drawn considerable attention as a novel class of targeted cancer therapeutics because of their capacity to specifically target oncogenes/protooncogenes that regulate key signaling pathways involved in carcinogenesis, tumor growth and progression, metastasis, cell survival, proliferation, angiogenesis, and drug resistance. However, clinical translation of miRNA-based therapeutics, in particular, has been challenging due to the ineffective delivery of ncRNA molecules into tumors and their uptake into cancer cells. Recently, superparamagnetic iron oxide-based nanoparticles (SPIONs) have emerged as highly effective and efficient for the delivery of therapeutic RNAs to malignant tissues, as well as theranostic (therapy and diagnostic) applications, due to their excellent biocompatibility, magnetic responsiveness, broad functional surface modification, safety, and biodistribution profiles. This review highlights recent advances in the use of SPIONs for the delivery of ncRNA-based therapeutics with an emphasis on their synthesis and coating strategies. Moreover, the advantages and current limitations of SPIONs and their future perspectives are discussed.</p><h3>Graphical abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":490,"journal":{"name":"Biomedical Microdevices","volume":"26 1","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2024-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"SPIONs: Superparamagnetic iron oxide-based nanoparticles for the delivery of microRNAi-therapeutics in cancer\",\"authors\":\"Goknur Kara, Bulent Ozpolat\",\"doi\":\"10.1007/s10544-024-00698-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Non-coding RNA (ncRNA)-based therapeutics that induce RNA interference (RNAi), such as microRNAs (miRNAs), have drawn considerable attention as a novel class of targeted cancer therapeutics because of their capacity to specifically target oncogenes/protooncogenes that regulate key signaling pathways involved in carcinogenesis, tumor growth and progression, metastasis, cell survival, proliferation, angiogenesis, and drug resistance. However, clinical translation of miRNA-based therapeutics, in particular, has been challenging due to the ineffective delivery of ncRNA molecules into tumors and their uptake into cancer cells. Recently, superparamagnetic iron oxide-based nanoparticles (SPIONs) have emerged as highly effective and efficient for the delivery of therapeutic RNAs to malignant tissues, as well as theranostic (therapy and diagnostic) applications, due to their excellent biocompatibility, magnetic responsiveness, broad functional surface modification, safety, and biodistribution profiles. This review highlights recent advances in the use of SPIONs for the delivery of ncRNA-based therapeutics with an emphasis on their synthesis and coating strategies. Moreover, the advantages and current limitations of SPIONs and their future perspectives are discussed.</p><h3>Graphical abstract</h3>\\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":490,\"journal\":{\"name\":\"Biomedical Microdevices\",\"volume\":\"26 1\",\"pages\":\"\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-02-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomedical Microdevices\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10544-024-00698-y\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical Microdevices","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10544-024-00698-y","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
SPIONs: Superparamagnetic iron oxide-based nanoparticles for the delivery of microRNAi-therapeutics in cancer
Non-coding RNA (ncRNA)-based therapeutics that induce RNA interference (RNAi), such as microRNAs (miRNAs), have drawn considerable attention as a novel class of targeted cancer therapeutics because of their capacity to specifically target oncogenes/protooncogenes that regulate key signaling pathways involved in carcinogenesis, tumor growth and progression, metastasis, cell survival, proliferation, angiogenesis, and drug resistance. However, clinical translation of miRNA-based therapeutics, in particular, has been challenging due to the ineffective delivery of ncRNA molecules into tumors and their uptake into cancer cells. Recently, superparamagnetic iron oxide-based nanoparticles (SPIONs) have emerged as highly effective and efficient for the delivery of therapeutic RNAs to malignant tissues, as well as theranostic (therapy and diagnostic) applications, due to their excellent biocompatibility, magnetic responsiveness, broad functional surface modification, safety, and biodistribution profiles. This review highlights recent advances in the use of SPIONs for the delivery of ncRNA-based therapeutics with an emphasis on their synthesis and coating strategies. Moreover, the advantages and current limitations of SPIONs and their future perspectives are discussed.
期刊介绍:
Biomedical Microdevices: BioMEMS and Biomedical Nanotechnology is an interdisciplinary periodical devoted to all aspects of research in the medical diagnostic and therapeutic applications of Micro-Electro-Mechanical Systems (BioMEMS) and nanotechnology for medicine and biology.
General subjects of interest include the design, characterization, testing, modeling and clinical validation of microfabricated systems, and their integration on-chip and in larger functional units. The specific interests of the Journal include systems for neural stimulation and recording, bioseparation technologies such as nanofilters and electrophoretic equipment, miniaturized analytic and DNA identification systems, biosensors, and micro/nanotechnologies for cell and tissue research, tissue engineering, cell transplantation, and the controlled release of drugs and biological molecules.
Contributions reporting on fundamental and applied investigations of the material science, biochemistry, and physics of biomedical microdevices and nanotechnology are encouraged. A non-exhaustive list of fields of interest includes: nanoparticle synthesis, characterization, and validation of therapeutic or imaging efficacy in animal models; biocompatibility; biochemical modification of microfabricated devices, with reference to non-specific protein adsorption, and the active immobilization and patterning of proteins on micro/nanofabricated surfaces; the dynamics of fluids in micro-and-nano-fabricated channels; the electromechanical and structural response of micro/nanofabricated systems; the interactions of microdevices with cells and tissues, including biocompatibility and biodegradation studies; variations in the characteristics of the systems as a function of the micro/nanofabrication parameters.