Rafat M Mohareb, Sayeed Mukhtar, Humaira Parveen, Mahmoud A Abdelaziz, Ensaf S Alwan
{"title":"新型噻吩衍生物的抗增殖、形态和分子对接研究及其在离子液体固定化反应中的策略","authors":"Rafat M Mohareb, Sayeed Mukhtar, Humaira Parveen, Mahmoud A Abdelaziz, Ensaf S Alwan","doi":"10.2174/0118715206262307231122104748","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>A number of research were conducted on the pyran and thiophene derivatives, which were attributed to have a wide range of biological activities, including anti-plasmodial, as well as acting as caspase, hepatitis C and cancer inhibitors.</p><p><strong>Objective: </strong>The multicomponent reactions of the 5-acetyl-2-amino-4-(phenylamino)-thiophene-3-carbonitrile produced biologically active target molecules like pyran and their fused derivatives. Comparison between regular catalytic multi-component reactions and solvent-free ionic liquids immobilized multicomponent was studied.</p><p><strong>Methods: </strong>The multicomponent reactions in this work were carried out not only under the reflux conditions using triethylamine as a catalyst but also in solvent-free ionic liquids immobilized magnetic nanoparticles (MNPs) catalysts.</p><p><strong>Results: </strong>Through this work, thirty-one new compounds were synthesized and characterized and were evaluated toward the six cancer cell lines, namely A549, HT-29, MKN-45, U87MG, and SMMC-7721 and H460. The most active compounds were further screened toward seventeen cancer cell lines classified according to the disease. In addition, the effect of compound 11e on the A549 cell line was selected to make further morphological changes in the cell line. The Molecular docking studies of 11e and 11f were carried and promising results were obtained.</p><p><strong>Conclusion: </strong>The synthesis of heterocyclic compounds derived from thiophene derivatives has been receiving significant attention. After a detailed optimizing study, it has been found that the solvent-free ionic liquids immobilized multi-component syntheses afforded a high yield of compounds, opening a greener procedure for this synthetically relevant transformation. Many of the synthesized compounds can be considered anticancer agents, enhancing further studies.</p>","PeriodicalId":7934,"journal":{"name":"Anti-cancer agents in medicinal chemistry","volume":" ","pages":"691-708"},"PeriodicalIF":2.6000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Anti-proliferative, Morphological and Molecular Docking Studies of New Thiophene Derivatives and their Strategy in Ionic Liquids Immobilized Reactions.\",\"authors\":\"Rafat M Mohareb, Sayeed Mukhtar, Humaira Parveen, Mahmoud A Abdelaziz, Ensaf S Alwan\",\"doi\":\"10.2174/0118715206262307231122104748\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>A number of research were conducted on the pyran and thiophene derivatives, which were attributed to have a wide range of biological activities, including anti-plasmodial, as well as acting as caspase, hepatitis C and cancer inhibitors.</p><p><strong>Objective: </strong>The multicomponent reactions of the 5-acetyl-2-amino-4-(phenylamino)-thiophene-3-carbonitrile produced biologically active target molecules like pyran and their fused derivatives. Comparison between regular catalytic multi-component reactions and solvent-free ionic liquids immobilized multicomponent was studied.</p><p><strong>Methods: </strong>The multicomponent reactions in this work were carried out not only under the reflux conditions using triethylamine as a catalyst but also in solvent-free ionic liquids immobilized magnetic nanoparticles (MNPs) catalysts.</p><p><strong>Results: </strong>Through this work, thirty-one new compounds were synthesized and characterized and were evaluated toward the six cancer cell lines, namely A549, HT-29, MKN-45, U87MG, and SMMC-7721 and H460. The most active compounds were further screened toward seventeen cancer cell lines classified according to the disease. In addition, the effect of compound 11e on the A549 cell line was selected to make further morphological changes in the cell line. The Molecular docking studies of 11e and 11f were carried and promising results were obtained.</p><p><strong>Conclusion: </strong>The synthesis of heterocyclic compounds derived from thiophene derivatives has been receiving significant attention. After a detailed optimizing study, it has been found that the solvent-free ionic liquids immobilized multi-component syntheses afforded a high yield of compounds, opening a greener procedure for this synthetically relevant transformation. Many of the synthesized compounds can be considered anticancer agents, enhancing further studies.</p>\",\"PeriodicalId\":7934,\"journal\":{\"name\":\"Anti-cancer agents in medicinal chemistry\",\"volume\":\" \",\"pages\":\"691-708\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Anti-cancer agents in medicinal chemistry\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.2174/0118715206262307231122104748\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, MEDICINAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Anti-cancer agents in medicinal chemistry","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2174/0118715206262307231122104748","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0
摘要
背景:人们对吡喃和噻吩衍生物进行了大量研究,认为这些衍生物具有广泛的生物活性,包括抗浆膜炎,以及作为caspase、丙型肝炎和癌症抑制剂:5-acetyl-2-amino-4-(phenylamino)-thiophene-3-carbonitrile 的多组分反应产生了具有生物活性的目标分子,如吡喃及其融合衍生物。研究了常规催化多组分反应与无溶剂离子液体固定化多组分反应之间的比较:方法:这项工作中的多组分反应不仅在以三乙胺为催化剂的回流条件下进行,而且还在无溶剂离子液体固定化磁性纳米粒子(MNPs)催化剂中进行:通过这项工作,我们合成并鉴定了 31 种新化合物,并对六种癌细胞系(即 A549、HT-29、MKN-45、U87MG、SMMC-7721 和 H460)进行了评估。根据疾病分类,对十七种癌细胞株进一步筛选出了最具活性的化合物。此外,还选择了化合物 11e 对 A549 细胞系的影响,以进一步改变该细胞系的形态。对 11e 和 11f 进行了分子对接研究,结果令人鼓舞:由噻吩衍生物衍生的杂环化合物的合成一直备受关注。经过详细的优化研究发现,无溶剂离子液体固定化多组分合成法可以获得高产率的化合物,为这一与合成相关的转化开辟了更绿色的程序。合成的许多化合物可被视为抗癌剂,从而促进了进一步的研究。
Anti-proliferative, Morphological and Molecular Docking Studies of New Thiophene Derivatives and their Strategy in Ionic Liquids Immobilized Reactions.
Background: A number of research were conducted on the pyran and thiophene derivatives, which were attributed to have a wide range of biological activities, including anti-plasmodial, as well as acting as caspase, hepatitis C and cancer inhibitors.
Objective: The multicomponent reactions of the 5-acetyl-2-amino-4-(phenylamino)-thiophene-3-carbonitrile produced biologically active target molecules like pyran and their fused derivatives. Comparison between regular catalytic multi-component reactions and solvent-free ionic liquids immobilized multicomponent was studied.
Methods: The multicomponent reactions in this work were carried out not only under the reflux conditions using triethylamine as a catalyst but also in solvent-free ionic liquids immobilized magnetic nanoparticles (MNPs) catalysts.
Results: Through this work, thirty-one new compounds were synthesized and characterized and were evaluated toward the six cancer cell lines, namely A549, HT-29, MKN-45, U87MG, and SMMC-7721 and H460. The most active compounds were further screened toward seventeen cancer cell lines classified according to the disease. In addition, the effect of compound 11e on the A549 cell line was selected to make further morphological changes in the cell line. The Molecular docking studies of 11e and 11f were carried and promising results were obtained.
Conclusion: The synthesis of heterocyclic compounds derived from thiophene derivatives has been receiving significant attention. After a detailed optimizing study, it has been found that the solvent-free ionic liquids immobilized multi-component syntheses afforded a high yield of compounds, opening a greener procedure for this synthetically relevant transformation. Many of the synthesized compounds can be considered anticancer agents, enhancing further studies.
期刊介绍:
Formerly: Current Medicinal Chemistry - Anti-Cancer Agents.
Anti-Cancer Agents in Medicinal Chemistry aims to cover all the latest and outstanding developments in medicinal chemistry and rational drug design for the discovery of anti-cancer agents.
Each issue contains a series of timely in-depth reviews and guest edited issues written by leaders in the field covering a range of current topics in cancer medicinal chemistry. The journal only considers high quality research papers for publication.
Anti-Cancer Agents in Medicinal Chemistry is an essential journal for every medicinal chemist who wishes to be kept informed and up-to-date with the latest and most important developments in cancer drug discovery.