{"title":"IL-4 激活白色脂肪细胞中葡萄糖利用的三酰甘油循环。","authors":"Svetlana Michurina, Margarita Agareva, Ekaterina Zubkova, Mikhail Menshikov, Iurii Stafeev, Yelena Parfyonova","doi":"10.1042/BCJ20230486","DOIUrl":null,"url":null,"abstract":"<p><p>The development of cardiometabolic complications during obesity is strongly associated with chronic latent inflammation in hypertrophied adipose tissue (AT). IL-4 is an anti-inflammatory cytokine, playing a protective role against insulin resistance, glucose intolerance and weight gain. The positive effects of IL-4 are associated not only with the activation of anti-inflammatory immune cells in AT, but also with the modulation of adipocyte metabolism. IL-4 is known to activate lipolysis and glucose uptake in adipocytes, but the precise regulatory mechanisms and physiological significance of these processes remain unclear. In this study, we detail IL-4 effects on glucose and triacylglycerides (TAGs) metabolism and propose mechanisms of IL-4 metabolic action in adipocytes. We have shown that IL-4 activates glucose oxidation, lipid droplet (LD) fragmentation, lipolysis and thermogenesis in mature 3T3-L1 adipocytes. We found that lipolysis was not accompanied by fatty acids (FAs) release from adipocytes, suggesting FA re-esterification. Moreover, glucose oxidation and thermogenesis stimulation depended on adipocyte triglyceride lipase (ATGL) activity, but not the uncoupling protein (UCP1) expression. Based on these data, IL-4 may activate the futile TAG-FA cycle in adipocytes, which enhances the oxidative activity of cells and heat production. Thus, the positive effect of IL-4 on systemic metabolism can be the result of the activation of non-canonical thermogenic mechanism in AT, increasing TAG turnover and utilization of excessive glucose.</p>","PeriodicalId":8825,"journal":{"name":"Biochemical Journal","volume":" ","pages":"329-344"},"PeriodicalIF":4.4000,"publicationDate":"2024-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"IL-4 activates the futile triacylglyceride cycle for glucose utilization in white adipocytes.\",\"authors\":\"Svetlana Michurina, Margarita Agareva, Ekaterina Zubkova, Mikhail Menshikov, Iurii Stafeev, Yelena Parfyonova\",\"doi\":\"10.1042/BCJ20230486\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The development of cardiometabolic complications during obesity is strongly associated with chronic latent inflammation in hypertrophied adipose tissue (AT). IL-4 is an anti-inflammatory cytokine, playing a protective role against insulin resistance, glucose intolerance and weight gain. The positive effects of IL-4 are associated not only with the activation of anti-inflammatory immune cells in AT, but also with the modulation of adipocyte metabolism. IL-4 is known to activate lipolysis and glucose uptake in adipocytes, but the precise regulatory mechanisms and physiological significance of these processes remain unclear. In this study, we detail IL-4 effects on glucose and triacylglycerides (TAGs) metabolism and propose mechanisms of IL-4 metabolic action in adipocytes. We have shown that IL-4 activates glucose oxidation, lipid droplet (LD) fragmentation, lipolysis and thermogenesis in mature 3T3-L1 adipocytes. We found that lipolysis was not accompanied by fatty acids (FAs) release from adipocytes, suggesting FA re-esterification. Moreover, glucose oxidation and thermogenesis stimulation depended on adipocyte triglyceride lipase (ATGL) activity, but not the uncoupling protein (UCP1) expression. Based on these data, IL-4 may activate the futile TAG-FA cycle in adipocytes, which enhances the oxidative activity of cells and heat production. Thus, the positive effect of IL-4 on systemic metabolism can be the result of the activation of non-canonical thermogenic mechanism in AT, increasing TAG turnover and utilization of excessive glucose.</p>\",\"PeriodicalId\":8825,\"journal\":{\"name\":\"Biochemical Journal\",\"volume\":\" \",\"pages\":\"329-344\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2024-02-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biochemical Journal\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1042/BCJ20230486\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochemical Journal","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1042/BCJ20230486","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
摘要
肥胖导致的心脏代谢并发症与肥大脂肪组织(AT)中的慢性潜在炎症密切相关。IL-4 是一种抗炎细胞因子,对胰岛素抵抗、葡萄糖不耐受和体重增加具有保护作用。IL-4 的积极作用不仅与激活脂肪组织中的抗炎免疫细胞有关,还与脂肪细胞的新陈代谢调节有关。众所周知,IL-4 能激活脂肪细胞的脂肪分解和葡萄糖摄取,但这些过程的确切调节机制和生理意义仍不清楚。本研究详细阐述了 IL-4 对葡萄糖和三酰甘油(TAG)代谢的影响,并提出了 IL-4 在脂肪细胞中的代谢作用机制。我们发现脂肪分解并不伴随脂肪酸(FA)从脂肪细胞中释放,这表明脂肪酸再酯化。此外,葡萄糖氧化和产热刺激依赖于脂肪细胞甘油三酯脂肪酶(ATGL)的活性,但不依赖于解偶联蛋白(UCP1)的表达。基于这些数据,IL-4 可能会激活脂肪细胞中徒劳的 TAG-FA 循环,从而增强细胞的氧化活性和产热。因此,IL-4 对全身代谢的积极影响可能是由于激活了 AT 中的非经典致热机制,增加了 TAG 的周转和对过量葡萄糖的利用。
IL-4 activates the futile triacylglyceride cycle for glucose utilization in white adipocytes.
The development of cardiometabolic complications during obesity is strongly associated with chronic latent inflammation in hypertrophied adipose tissue (AT). IL-4 is an anti-inflammatory cytokine, playing a protective role against insulin resistance, glucose intolerance and weight gain. The positive effects of IL-4 are associated not only with the activation of anti-inflammatory immune cells in AT, but also with the modulation of adipocyte metabolism. IL-4 is known to activate lipolysis and glucose uptake in adipocytes, but the precise regulatory mechanisms and physiological significance of these processes remain unclear. In this study, we detail IL-4 effects on glucose and triacylglycerides (TAGs) metabolism and propose mechanisms of IL-4 metabolic action in adipocytes. We have shown that IL-4 activates glucose oxidation, lipid droplet (LD) fragmentation, lipolysis and thermogenesis in mature 3T3-L1 adipocytes. We found that lipolysis was not accompanied by fatty acids (FAs) release from adipocytes, suggesting FA re-esterification. Moreover, glucose oxidation and thermogenesis stimulation depended on adipocyte triglyceride lipase (ATGL) activity, but not the uncoupling protein (UCP1) expression. Based on these data, IL-4 may activate the futile TAG-FA cycle in adipocytes, which enhances the oxidative activity of cells and heat production. Thus, the positive effect of IL-4 on systemic metabolism can be the result of the activation of non-canonical thermogenic mechanism in AT, increasing TAG turnover and utilization of excessive glucose.
期刊介绍:
Exploring the molecular mechanisms that underpin key biological processes, the Biochemical Journal is a leading bioscience journal publishing high-impact scientific research papers and reviews on the latest advances and new mechanistic concepts in the fields of biochemistry, cellular biosciences and molecular biology.
The Journal and its Editorial Board are committed to publishing work that provides a significant advance to current understanding or mechanistic insights; studies that go beyond observational work using in vitro and/or in vivo approaches are welcomed.
Painless publishing:
All papers undergo a rigorous peer review process; however, the Editorial Board is committed to ensuring that, if revisions are recommended, extra experiments not necessary to the paper will not be asked for.
Areas covered in the journal include:
Cell biology
Chemical biology
Energy processes
Gene expression and regulation
Mechanisms of disease
Metabolism
Molecular structure and function
Plant biology
Signalling