光学分辨率对体内双光子光遗传光刺激空间精度的贡献

IF 4.8 2区 医学 Q1 NEUROSCIENCES Neurophotonics Pub Date : 2024-01-01 Epub Date: 2024-02-06 DOI:10.1117/1.NPh.11.1.015006
Robert M Lees, Bruno Pichler, Adam M Packer
{"title":"光学分辨率对体内双光子光遗传光刺激空间精度的贡献","authors":"Robert M Lees, Bruno Pichler, Adam M Packer","doi":"10.1117/1.NPh.11.1.015006","DOIUrl":null,"url":null,"abstract":"<p><strong>Significance: </strong>Two-photon optogenetics combines nonlinear excitation with noninvasive activation of neurons to enable the manipulation of neural circuits with a high degree of spatial precision. Combined with two-photon population calcium imaging, these approaches comprise a flexible platform for all-optical interrogation of neural circuits. However, a multitude of optical and biological factors dictate the exact precision of this approach <i>in vivo</i>, where it is most usefully applied.</p><p><strong>Aim: </strong>We aimed to assess how the optical point spread function (OPSF) contributes to the spatial precision of two-photon photostimulation in neurobiology.</p><p><strong>Approach: </strong>We altered the axial spread of the OPSF of the photostimulation beam using a spatial light modulator. Subsequently, calcium imaging was used to monitor the axial spatial precision of two-photon photostimulation of layer 2 neurons in the mouse neocortex.</p><p><strong>Results: </strong>We found that optical resolution is not always the limiting factor of the spatial precision of two-photon optogenetic photostimulation and, by doing so, reveal the key factors that must be improved to achieve maximal precision.</p><p><strong>Conclusions: </strong>Our results enable future work to focus on the optimal factors by providing key insight from controlled experiments in a manner not previously reported. This research can be applied to advance the state-of-the-art of all-optical interrogation, extending the toolkit for neuroscience research to achieve spatiotemporal precision at the crucial levels in which neural circuits operate.</p>","PeriodicalId":54335,"journal":{"name":"Neurophotonics","volume":"11 1","pages":"015006"},"PeriodicalIF":4.8000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10846536/pdf/","citationCount":"0","resultStr":"{\"title\":\"Contribution of optical resolution to the spatial precision of two-photon optogenetic photostimulation <i>in vivo</i>.\",\"authors\":\"Robert M Lees, Bruno Pichler, Adam M Packer\",\"doi\":\"10.1117/1.NPh.11.1.015006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Significance: </strong>Two-photon optogenetics combines nonlinear excitation with noninvasive activation of neurons to enable the manipulation of neural circuits with a high degree of spatial precision. Combined with two-photon population calcium imaging, these approaches comprise a flexible platform for all-optical interrogation of neural circuits. However, a multitude of optical and biological factors dictate the exact precision of this approach <i>in vivo</i>, where it is most usefully applied.</p><p><strong>Aim: </strong>We aimed to assess how the optical point spread function (OPSF) contributes to the spatial precision of two-photon photostimulation in neurobiology.</p><p><strong>Approach: </strong>We altered the axial spread of the OPSF of the photostimulation beam using a spatial light modulator. Subsequently, calcium imaging was used to monitor the axial spatial precision of two-photon photostimulation of layer 2 neurons in the mouse neocortex.</p><p><strong>Results: </strong>We found that optical resolution is not always the limiting factor of the spatial precision of two-photon optogenetic photostimulation and, by doing so, reveal the key factors that must be improved to achieve maximal precision.</p><p><strong>Conclusions: </strong>Our results enable future work to focus on the optimal factors by providing key insight from controlled experiments in a manner not previously reported. This research can be applied to advance the state-of-the-art of all-optical interrogation, extending the toolkit for neuroscience research to achieve spatiotemporal precision at the crucial levels in which neural circuits operate.</p>\",\"PeriodicalId\":54335,\"journal\":{\"name\":\"Neurophotonics\",\"volume\":\"11 1\",\"pages\":\"015006\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10846536/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neurophotonics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1117/1.NPh.11.1.015006\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/2/6 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurophotonics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1117/1.NPh.11.1.015006","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/2/6 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

意义重大:双光子光遗传学将非线性激发与神经元的非侵入性激活相结合,实现了对神经回路的高空间精度操纵。这些方法与双光子群体钙成像相结合,为神经回路的全光学检测提供了一个灵活的平台。目的:我们旨在评估光学点扩散函数(OPSF)如何影响神经生物学中双光子光刺激的空间精度:方法:我们使用空间光调制器改变了光刺激光束 OPSF 的轴向扩散。随后,利用钙成像技术监测了双光子光刺激小鼠新皮层第 2 层神经元的轴向空间精度:结果:我们发现光学分辨率并不总是双光子光遗传光刺激空间精确度的限制因素,并由此揭示了实现最高精确度必须改进的关键因素:我们的研究结果以一种前人未曾报道过的方式,从受控实验中提供了关键的见解,从而使未来的工作能够聚焦于最佳因素。这项研究可用于推动全光学检测技术的发展,扩展神经科学研究的工具包,在神经回路运行的关键层面实现时空精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Contribution of optical resolution to the spatial precision of two-photon optogenetic photostimulation in vivo.

Significance: Two-photon optogenetics combines nonlinear excitation with noninvasive activation of neurons to enable the manipulation of neural circuits with a high degree of spatial precision. Combined with two-photon population calcium imaging, these approaches comprise a flexible platform for all-optical interrogation of neural circuits. However, a multitude of optical and biological factors dictate the exact precision of this approach in vivo, where it is most usefully applied.

Aim: We aimed to assess how the optical point spread function (OPSF) contributes to the spatial precision of two-photon photostimulation in neurobiology.

Approach: We altered the axial spread of the OPSF of the photostimulation beam using a spatial light modulator. Subsequently, calcium imaging was used to monitor the axial spatial precision of two-photon photostimulation of layer 2 neurons in the mouse neocortex.

Results: We found that optical resolution is not always the limiting factor of the spatial precision of two-photon optogenetic photostimulation and, by doing so, reveal the key factors that must be improved to achieve maximal precision.

Conclusions: Our results enable future work to focus on the optimal factors by providing key insight from controlled experiments in a manner not previously reported. This research can be applied to advance the state-of-the-art of all-optical interrogation, extending the toolkit for neuroscience research to achieve spatiotemporal precision at the crucial levels in which neural circuits operate.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Neurophotonics
Neurophotonics Neuroscience-Neuroscience (miscellaneous)
CiteScore
7.20
自引率
11.30%
发文量
114
审稿时长
21 weeks
期刊介绍: At the interface of optics and neuroscience, Neurophotonics is a peer-reviewed journal that covers advances in optical technology applicable to study of the brain and their impact on the basic and clinical neuroscience applications.
期刊最新文献
Viscocohesive hyaluronan gel enhances stability of intravital multiphoton imaging with subcellular resolution. Zika virus encephalitis causes transient reduction of functional cortical connectivity. Early changes in spatiotemporal dynamics of remapped circuits and global networks predict functional recovery after stroke in mice. Distribution of spine classes shows intra-neuronal dendritic heterogeneity in mouse cortex. Expansion microscopy reveals neural circuit organization in genetic animal models.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1