{"title":"深处理与浅处理:异步和同步在线平台的学习与记忆实验。","authors":"Alexia E Pollack","doi":"10.59390/FEAP4736","DOIUrl":null,"url":null,"abstract":"<p><p>Processing of words can be meaning-based (deep processing) or appearance/sound-based (shallow processing). A simple experiment that can be conducted online, asynchronously or synchronously, demonstrates that the number of words recalled from a list of 24 words read aloud depends on the instructions given to students beforehand. Students in the deep processing group were asked to write 'yes' or 'no' - <i>is the word likeable/pleasant</i>, while students in the shallow processing group were asked to write 'yes' or 'no' - <i>does the word contain an E or G</i>. After a one-minute delay in which students performed a backward calculation task, they had two minutes to recall as many words as possible from the list. Regardless of how the online experiment was conducted, asynchronously or synchronously, the deep processing group recalled an average of 11-14 words compared to the shallow processing group, which recalled an average of 8-10 words. The deep processing group consistently recalled 3-6 more words on average than the shallow processing group. After debriefing the students about the experiment, the instructor can focus class discussion on topics that include experimental design, methodology, reproducibility, data analysis, as well as using these data as an evidence-based starting point for best learning practices.</p>","PeriodicalId":74004,"journal":{"name":"Journal of undergraduate neuroscience education : JUNE : a publication of FUN, Faculty for Undergraduate Neuroscience","volume":"20 2","pages":"A146-A149"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10653231/pdf/","citationCount":"0","resultStr":"{\"title\":\"Deep versus Shallow Processing: A Learning and Memory Experiment for Asynchronous and Synchronous Online Platforms.\",\"authors\":\"Alexia E Pollack\",\"doi\":\"10.59390/FEAP4736\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Processing of words can be meaning-based (deep processing) or appearance/sound-based (shallow processing). A simple experiment that can be conducted online, asynchronously or synchronously, demonstrates that the number of words recalled from a list of 24 words read aloud depends on the instructions given to students beforehand. Students in the deep processing group were asked to write 'yes' or 'no' - <i>is the word likeable/pleasant</i>, while students in the shallow processing group were asked to write 'yes' or 'no' - <i>does the word contain an E or G</i>. After a one-minute delay in which students performed a backward calculation task, they had two minutes to recall as many words as possible from the list. Regardless of how the online experiment was conducted, asynchronously or synchronously, the deep processing group recalled an average of 11-14 words compared to the shallow processing group, which recalled an average of 8-10 words. The deep processing group consistently recalled 3-6 more words on average than the shallow processing group. After debriefing the students about the experiment, the instructor can focus class discussion on topics that include experimental design, methodology, reproducibility, data analysis, as well as using these data as an evidence-based starting point for best learning practices.</p>\",\"PeriodicalId\":74004,\"journal\":{\"name\":\"Journal of undergraduate neuroscience education : JUNE : a publication of FUN, Faculty for Undergraduate Neuroscience\",\"volume\":\"20 2\",\"pages\":\"A146-A149\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10653231/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of undergraduate neuroscience education : JUNE : a publication of FUN, Faculty for Undergraduate Neuroscience\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.59390/FEAP4736\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2022/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of undergraduate neuroscience education : JUNE : a publication of FUN, Faculty for Undergraduate Neuroscience","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.59390/FEAP4736","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
Deep versus Shallow Processing: A Learning and Memory Experiment for Asynchronous and Synchronous Online Platforms.
Processing of words can be meaning-based (deep processing) or appearance/sound-based (shallow processing). A simple experiment that can be conducted online, asynchronously or synchronously, demonstrates that the number of words recalled from a list of 24 words read aloud depends on the instructions given to students beforehand. Students in the deep processing group were asked to write 'yes' or 'no' - is the word likeable/pleasant, while students in the shallow processing group were asked to write 'yes' or 'no' - does the word contain an E or G. After a one-minute delay in which students performed a backward calculation task, they had two minutes to recall as many words as possible from the list. Regardless of how the online experiment was conducted, asynchronously or synchronously, the deep processing group recalled an average of 11-14 words compared to the shallow processing group, which recalled an average of 8-10 words. The deep processing group consistently recalled 3-6 more words on average than the shallow processing group. After debriefing the students about the experiment, the instructor can focus class discussion on topics that include experimental design, methodology, reproducibility, data analysis, as well as using these data as an evidence-based starting point for best learning practices.