利用原始文献教授突触传递:以技能为重点的教学方法。

Andrew J Payne, Kyle B Bills, Scott C Steffensen
{"title":"利用原始文献教授突触传递:以技能为重点的教学方法。","authors":"Andrew J Payne, Kyle B Bills, Scott C Steffensen","doi":"10.59390/NYOR9047","DOIUrl":null,"url":null,"abstract":"<p><p>Neuroscience is a burgeoning and intensive undergraduate major at many institutions of higher education and several areas in neuroscience education need further development. One such needed development is an increased focus on the procurement of career-relevant skills in addition to the traditional acquisition of subject knowledge. Skill development is particularly challenging in neuroscience education as the subject's interdisciplinary nature provides an atypically broad range of potential careers for graduates. Skills common to many careers in neuroscience include the ability to understand and analyze quantitative data and to draw conclusions based on those analyses. Here is presented an active learning pedagogical approach involving the analysis of seminal articles in the primary scientific literature to provide practice in analyzing data and drawing conclusions from those data while at the same time learning the fundamental tenets of synaptic transmission. Articles were selected that highlight principles such as the role of Ca<sup>2+</sup> in synaptic release, exocytosis, quantal release, and synaptic delay. Figures from these articles that can readily be used to teach these principles were selected, and questions that can help to guide students' analysis of the data are also suggested. Activities like this are needed in greater numbers to facilitate the process of helping students gain skills relevant to a productive career in neuroscience.</p>","PeriodicalId":74004,"journal":{"name":"Journal of undergraduate neuroscience education : JUNE : a publication of FUN, Faculty for Undergraduate Neuroscience","volume":"22 1","pages":"R1-R5"},"PeriodicalIF":0.0000,"publicationDate":"2023-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10768826/pdf/","citationCount":"0","resultStr":"{\"title\":\"Teaching Synaptic Transmission Using Primary Literature: A Skills-Focused Pedagogical Approach.\",\"authors\":\"Andrew J Payne, Kyle B Bills, Scott C Steffensen\",\"doi\":\"10.59390/NYOR9047\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Neuroscience is a burgeoning and intensive undergraduate major at many institutions of higher education and several areas in neuroscience education need further development. One such needed development is an increased focus on the procurement of career-relevant skills in addition to the traditional acquisition of subject knowledge. Skill development is particularly challenging in neuroscience education as the subject's interdisciplinary nature provides an atypically broad range of potential careers for graduates. Skills common to many careers in neuroscience include the ability to understand and analyze quantitative data and to draw conclusions based on those analyses. Here is presented an active learning pedagogical approach involving the analysis of seminal articles in the primary scientific literature to provide practice in analyzing data and drawing conclusions from those data while at the same time learning the fundamental tenets of synaptic transmission. Articles were selected that highlight principles such as the role of Ca<sup>2+</sup> in synaptic release, exocytosis, quantal release, and synaptic delay. Figures from these articles that can readily be used to teach these principles were selected, and questions that can help to guide students' analysis of the data are also suggested. Activities like this are needed in greater numbers to facilitate the process of helping students gain skills relevant to a productive career in neuroscience.</p>\",\"PeriodicalId\":74004,\"journal\":{\"name\":\"Journal of undergraduate neuroscience education : JUNE : a publication of FUN, Faculty for Undergraduate Neuroscience\",\"volume\":\"22 1\",\"pages\":\"R1-R5\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-12-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10768826/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of undergraduate neuroscience education : JUNE : a publication of FUN, Faculty for Undergraduate Neuroscience\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.59390/NYOR9047\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of undergraduate neuroscience education : JUNE : a publication of FUN, Faculty for Undergraduate Neuroscience","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.59390/NYOR9047","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

神经科学在许多高等教育机构都是一个新兴和密集的本科专业,神经科学教育的几个领域需要进一步发展。其中一个需要发展的领域是,除了传统的学科知识学习之外,要更加注重学习与职业相关的技能。在神经科学教育中,技能培养尤其具有挑战性,因为该学科的跨学科性质为毕业生提供了非常广泛的潜在职业。神经科学领域许多职业的共同技能包括理解和分析定量数据以及根据这些分析得出结论的能力。这里介绍一种主动学习的教学方法,包括分析主要科学文献中的重要文章,以提供分析数据和从这些数据中得出结论的练习,同时学习突触传递的基本原理。我们选择的文章突出了 Ca2+ 在突触释放、外吞、量子释放和突触延迟中的作用等原理。我们还从这些文章中选择了可用于教授这些原理的图表,并提出了有助于指导学生分析数据的问题。我们需要开展更多类似的活动,以帮助学生获得在神经科学领域有所作为的技能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Teaching Synaptic Transmission Using Primary Literature: A Skills-Focused Pedagogical Approach.

Neuroscience is a burgeoning and intensive undergraduate major at many institutions of higher education and several areas in neuroscience education need further development. One such needed development is an increased focus on the procurement of career-relevant skills in addition to the traditional acquisition of subject knowledge. Skill development is particularly challenging in neuroscience education as the subject's interdisciplinary nature provides an atypically broad range of potential careers for graduates. Skills common to many careers in neuroscience include the ability to understand and analyze quantitative data and to draw conclusions based on those analyses. Here is presented an active learning pedagogical approach involving the analysis of seminal articles in the primary scientific literature to provide practice in analyzing data and drawing conclusions from those data while at the same time learning the fundamental tenets of synaptic transmission. Articles were selected that highlight principles such as the role of Ca2+ in synaptic release, exocytosis, quantal release, and synaptic delay. Figures from these articles that can readily be used to teach these principles were selected, and questions that can help to guide students' analysis of the data are also suggested. Activities like this are needed in greater numbers to facilitate the process of helping students gain skills relevant to a productive career in neuroscience.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Interactive Notebooks Improve Students' Understanding of Developmental Neurobiology, Attitudes Toward Research, and Experimental Design Competency in a Lecture-Based Neuroscience Course. Introducing BRAINOER: The Behavioral Research and Interdisciplinary Neuroscience Open Educational Repository. Low-Cost Classroom and Laboratory Exercises for Investigating Both Wave and Event-Related Electroencephalogram Potentials. Memphis NeuroSTART Program: Promoting Student Success and Increasing the Diversity of Applicants to Neuroscience Graduate Programs. Neurodiversity in the Minds of Students: From Perception to Campus Programming.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1