基于预缠绕形状记忆合金弹簧致动器的软人工肌肉,为可穿戴机器人提供高被动辅助扭矩

Soft robotics Pub Date : 2024-10-01 Epub Date: 2024-02-06 DOI:10.1089/soro.2023.0154
Jaeyeon Jeong, Minjae Cho, Ki-Uk Kyung
{"title":"基于预缠绕形状记忆合金弹簧致动器的软人工肌肉,为可穿戴机器人提供高被动辅助扭矩","authors":"Jaeyeon Jeong, Minjae Cho, Ki-Uk Kyung","doi":"10.1089/soro.2023.0154","DOIUrl":null,"url":null,"abstract":"<p><p>For designing the assistive wearable rehabilitation robots, it is challenging to design the robot as energy efficient because the actuators have to be capable of overcoming human loads such as gravity of the body and spastic torque continuously during the assistance. To address these challenges, we propose a novel design of soft artificial muscle that utilizes shape memory alloy (SMA) spring actuators with pre-detwinning process. The SMA spring was fabricated through a process called pre-detwinning, which enhances the linearity of the SMA spring in martensite phase and unpowered restoring force, which is called passive force. The fabricated SMA spring can contract >60%. Finally, the soft wearable robot that can assist not only the gravitational torque exerted on the elbow by passive force, but also the elbow movements with active force was designed with a soft artificial muscle. A soft artificial muscle consists of the bundles of pre-detwinned SMA springs integrated with the stretchable coolant vessel. The stiffness of the muscle was measured as 1125 N/m in martensite phase and 1732 N/m in austenite phase. In addition, the muscle showed great actuation frequency performances, the bandwidth of which was measured as 0.5 Hz. The proposed wearable mechanism can fully compensate the gravitational torque for all the angles in passive mode. In addition, the proposed mechanism can produce high torque up to 3.5 Nm and movements in active mode.</p>","PeriodicalId":94210,"journal":{"name":"Soft robotics","volume":" ","pages":"835-844"},"PeriodicalIF":0.0000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Soft Artificial Muscle Based on Pre-Detwinned Shape Memory Alloy Spring Actuator Achieving High Passive Assistive Torque for Wearable Robot.\",\"authors\":\"Jaeyeon Jeong, Minjae Cho, Ki-Uk Kyung\",\"doi\":\"10.1089/soro.2023.0154\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>For designing the assistive wearable rehabilitation robots, it is challenging to design the robot as energy efficient because the actuators have to be capable of overcoming human loads such as gravity of the body and spastic torque continuously during the assistance. To address these challenges, we propose a novel design of soft artificial muscle that utilizes shape memory alloy (SMA) spring actuators with pre-detwinning process. The SMA spring was fabricated through a process called pre-detwinning, which enhances the linearity of the SMA spring in martensite phase and unpowered restoring force, which is called passive force. The fabricated SMA spring can contract >60%. Finally, the soft wearable robot that can assist not only the gravitational torque exerted on the elbow by passive force, but also the elbow movements with active force was designed with a soft artificial muscle. A soft artificial muscle consists of the bundles of pre-detwinned SMA springs integrated with the stretchable coolant vessel. The stiffness of the muscle was measured as 1125 N/m in martensite phase and 1732 N/m in austenite phase. In addition, the muscle showed great actuation frequency performances, the bandwidth of which was measured as 0.5 Hz. The proposed wearable mechanism can fully compensate the gravitational torque for all the angles in passive mode. In addition, the proposed mechanism can produce high torque up to 3.5 Nm and movements in active mode.</p>\",\"PeriodicalId\":94210,\"journal\":{\"name\":\"Soft robotics\",\"volume\":\" \",\"pages\":\"835-844\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Soft robotics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1089/soro.2023.0154\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/2/6 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Soft robotics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1089/soro.2023.0154","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/2/6 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在设计穿戴式辅助康复机器人时,由于致动器必须能够克服人体重力和辅助过程中持续的痉挛力矩等人体负载,因此要设计出高效节能的机器人具有很大的挑战性。为了应对这些挑战,我们提出了一种新颖的软人工肌肉设计,该设计利用形状记忆合金(SMA)弹簧致动器,并采用预脱模工艺。SMA 弹簧是通过一种称为预绞合的工艺制成的,这种工艺可提高 SMA 弹簧在马氏体相和无动力恢复力(即被动力)中的线性度。制成的 SMA 弹簧收缩率大于 60%。最后,我们设计了一种软性可穿戴机器人,它不仅能通过被动力辅助肘部承受重力扭矩,还能通过主动力辅助肘部运动。软人造肌肉由预绞合的 SMA 弹簧束和可拉伸的冷却剂容器组成。经测量,肌肉的刚度在马氏体相为 1125 牛/米,在奥氏体相为 1732 牛/米。此外,肌肉还显示出很高的致动频率性能,其带宽测量值为 0.5 Hz。在被动模式下,所提出的可穿戴机构可以完全补偿所有角度的重力扭矩。此外,所提出的机构在主动模式下可产生高达 3.5 牛米的高扭矩和运动。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Soft Artificial Muscle Based on Pre-Detwinned Shape Memory Alloy Spring Actuator Achieving High Passive Assistive Torque for Wearable Robot.

For designing the assistive wearable rehabilitation robots, it is challenging to design the robot as energy efficient because the actuators have to be capable of overcoming human loads such as gravity of the body and spastic torque continuously during the assistance. To address these challenges, we propose a novel design of soft artificial muscle that utilizes shape memory alloy (SMA) spring actuators with pre-detwinning process. The SMA spring was fabricated through a process called pre-detwinning, which enhances the linearity of the SMA spring in martensite phase and unpowered restoring force, which is called passive force. The fabricated SMA spring can contract >60%. Finally, the soft wearable robot that can assist not only the gravitational torque exerted on the elbow by passive force, but also the elbow movements with active force was designed with a soft artificial muscle. A soft artificial muscle consists of the bundles of pre-detwinned SMA springs integrated with the stretchable coolant vessel. The stiffness of the muscle was measured as 1125 N/m in martensite phase and 1732 N/m in austenite phase. In addition, the muscle showed great actuation frequency performances, the bandwidth of which was measured as 0.5 Hz. The proposed wearable mechanism can fully compensate the gravitational torque for all the angles in passive mode. In addition, the proposed mechanism can produce high torque up to 3.5 Nm and movements in active mode.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Soft Robotic Heart Formed with a Myocardial Band for Cardiac Functions. ZodiAq: An Isotropic Flagella-Inspired Soft Underwater Drone for Safe Marine Exploration. Reprogrammable Flexible Piezoelectric Actuator Arrays with a High Degree of Freedom for Shape Morphing and Locomotion. Small-Scale Soft Terrestrial Robot with Electrically Driven Multi-Modal Locomotion Capability. Soft Robotics in Upper Limb Neurorehabilitation and Assistance: Current Clinical Evidence and Recommendations.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1