Walid Chayoua, Koen Visser, Myrthe E de Koning, Albertus Beishuizen, Rein IJmker, Joukje van der Naalt, Johannes G Krabbe, Harm Jan van der Horn
{"title":"在荷兰多中心队列中使用快速护理点测试评估 GFAP 和 UCH-L1,以预测轻度脑外伤后的头部计算机断层扫描病变。","authors":"Walid Chayoua, Koen Visser, Myrthe E de Koning, Albertus Beishuizen, Rein IJmker, Joukje van der Naalt, Johannes G Krabbe, Harm Jan van der Horn","doi":"10.1089/neu.2023.0491","DOIUrl":null,"url":null,"abstract":"<p><p>Mild traumatic brain injury (mTBI) is a common condition seen in emergency departments worldwide. Blood-based biomarkers glial fibrillary acidic protein (GFAP) and ubiquitin C-terminal hydrolase-L1 (UCH-L1) are recently U.S. Food and Drug Administration-approved for the prediction of intracranial lesions on head computed tomography (CT) scans in mTBI. We evaluated the diagnostic performance of GFAP and UCH-L1 in a Dutch cohort using the i-STAT TBI assay. In a multi-center observational study, we enrolled 253 mTBI patients. Head CT scans were scored using the Marshall classification system. Logistic regression models were used to assess the contribution of biomarkers and clinical parameters to diagnostic performance. Detection of UCH-L1 and GFAP resulted in a sensitivity of 97% and specificity of 19% for CT positivity in mTBI patients, along with a negative predictive value of 95% (88-100%) and a positive predictive value of 27% (21-33%). Combining biomarker testing with loss of consciousness and time to sample increased specificity to 46%. Combined testing of UCH-L1 and GFAP testing resulted in possibly more unnecessary CT scans compared with GFAP testing alone, with only limited increase in sensitivity. This study confirmed high sensitivity of GFAP and UCH-L1 for CT abnormalities in mTBI patients using the i-STAT TBI test. The results support the potential use of GFAP and UCH-L1 as tools for determining the indication for CT scanning in mTBI patients, possibly offering a cost- and time-effective approach to management of patients with mTBI. Prospective studies in larger cohorts are warranted to validate our findings.</p>","PeriodicalId":16512,"journal":{"name":"Journal of neurotrauma","volume":" ","pages":"e1630-e1640"},"PeriodicalIF":3.9000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Evaluation of Glial Fibrillary Acidic Protein and Ubiquitin C-Terminal Hydrolase-L1 Using a Rapid Point of Care Test for Predicting Head Computed Tomography Lesions After Mild Traumatic Brain Injury in a Dutch Multi-Center Cohort.\",\"authors\":\"Walid Chayoua, Koen Visser, Myrthe E de Koning, Albertus Beishuizen, Rein IJmker, Joukje van der Naalt, Johannes G Krabbe, Harm Jan van der Horn\",\"doi\":\"10.1089/neu.2023.0491\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Mild traumatic brain injury (mTBI) is a common condition seen in emergency departments worldwide. Blood-based biomarkers glial fibrillary acidic protein (GFAP) and ubiquitin C-terminal hydrolase-L1 (UCH-L1) are recently U.S. Food and Drug Administration-approved for the prediction of intracranial lesions on head computed tomography (CT) scans in mTBI. We evaluated the diagnostic performance of GFAP and UCH-L1 in a Dutch cohort using the i-STAT TBI assay. In a multi-center observational study, we enrolled 253 mTBI patients. Head CT scans were scored using the Marshall classification system. Logistic regression models were used to assess the contribution of biomarkers and clinical parameters to diagnostic performance. Detection of UCH-L1 and GFAP resulted in a sensitivity of 97% and specificity of 19% for CT positivity in mTBI patients, along with a negative predictive value of 95% (88-100%) and a positive predictive value of 27% (21-33%). Combining biomarker testing with loss of consciousness and time to sample increased specificity to 46%. Combined testing of UCH-L1 and GFAP testing resulted in possibly more unnecessary CT scans compared with GFAP testing alone, with only limited increase in sensitivity. This study confirmed high sensitivity of GFAP and UCH-L1 for CT abnormalities in mTBI patients using the i-STAT TBI test. The results support the potential use of GFAP and UCH-L1 as tools for determining the indication for CT scanning in mTBI patients, possibly offering a cost- and time-effective approach to management of patients with mTBI. Prospective studies in larger cohorts are warranted to validate our findings.</p>\",\"PeriodicalId\":16512,\"journal\":{\"name\":\"Journal of neurotrauma\",\"volume\":\" \",\"pages\":\"e1630-e1640\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2024-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of neurotrauma\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1089/neu.2023.0491\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/2/28 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"CLINICAL NEUROLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of neurotrauma","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1089/neu.2023.0491","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/2/28 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
Evaluation of Glial Fibrillary Acidic Protein and Ubiquitin C-Terminal Hydrolase-L1 Using a Rapid Point of Care Test for Predicting Head Computed Tomography Lesions After Mild Traumatic Brain Injury in a Dutch Multi-Center Cohort.
Mild traumatic brain injury (mTBI) is a common condition seen in emergency departments worldwide. Blood-based biomarkers glial fibrillary acidic protein (GFAP) and ubiquitin C-terminal hydrolase-L1 (UCH-L1) are recently U.S. Food and Drug Administration-approved for the prediction of intracranial lesions on head computed tomography (CT) scans in mTBI. We evaluated the diagnostic performance of GFAP and UCH-L1 in a Dutch cohort using the i-STAT TBI assay. In a multi-center observational study, we enrolled 253 mTBI patients. Head CT scans were scored using the Marshall classification system. Logistic regression models were used to assess the contribution of biomarkers and clinical parameters to diagnostic performance. Detection of UCH-L1 and GFAP resulted in a sensitivity of 97% and specificity of 19% for CT positivity in mTBI patients, along with a negative predictive value of 95% (88-100%) and a positive predictive value of 27% (21-33%). Combining biomarker testing with loss of consciousness and time to sample increased specificity to 46%. Combined testing of UCH-L1 and GFAP testing resulted in possibly more unnecessary CT scans compared with GFAP testing alone, with only limited increase in sensitivity. This study confirmed high sensitivity of GFAP and UCH-L1 for CT abnormalities in mTBI patients using the i-STAT TBI test. The results support the potential use of GFAP and UCH-L1 as tools for determining the indication for CT scanning in mTBI patients, possibly offering a cost- and time-effective approach to management of patients with mTBI. Prospective studies in larger cohorts are warranted to validate our findings.
期刊介绍:
Journal of Neurotrauma is the flagship, peer-reviewed publication for reporting on the latest advances in both the clinical and laboratory investigation of traumatic brain and spinal cord injury. The Journal focuses on the basic pathobiology of injury to the central nervous system, while considering preclinical and clinical trials targeted at improving both the early management and long-term care and recovery of traumatically injured patients. This is the essential journal publishing cutting-edge basic and translational research in traumatically injured human and animal studies, with emphasis on neurodegenerative disease research linked to CNS trauma.