{"title":"APOC3 siRNA 和 ASO 治疗血脂异常。","authors":"Jasmine Chebli, Miriam Larouche, Daniel Gaudet","doi":"10.1097/MED.0000000000000857","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose of review: </strong>The aim of this review is to present the clinical indications of apolipoprotein C-III (apoC3) inhibition in the therapeutic arsenal for the treatment of lipid disorders and associated risks and to compare the most advanced modalities of apoC3 inhibition currently available or in development, specifically APOC3 antisense oligonucleotides (ASO) and small interfering RNA (siRNA).</p><p><strong>Recent findings: </strong>ApoC3 inhibition significantly decreases triglyceride levels by mechanisms coupling both lipoprotein lipase (LPL) upregulation and LPL-independent mechanisms. The main apoC3 inhibitors in advanced clinical development are the GalNAc-ASO olezarsen and the GalNAc-siRNA plozasiran. Clinical studies conducted with volanesorsen, the olezarsen precursor, showed a favorable effect on hepatic steatosis (nonalcoholic fatty liver disease, NAFLD). Olezarsen does not appear to be associated with the main side effects attributed to volanesorsen including thrombocytopenia. Plozasiran is in advanced clinical development and requires subcutaneous injection every 3 months and present to-date an efficacy and safety profile comparable to that of the monthly ASO.</p><p><strong>Summary: </strong>Inhibition of apoC3 is effective across all the spectrum of hypertriglyceridemia, might have a favorable effect on hepatic steatosis (NAFLD) and the effect of apoC3 inhibition on cardiovascular risk is not limited to its effect on plasma triglycerides. APOC3 GalNAc-conjugated ASO and siRNA are both effective in decreasing plasma apoC3 and triglyceride levels.</p>","PeriodicalId":10964,"journal":{"name":"Current Opinion in Endocrinology & Diabetes and Obesity","volume":" ","pages":"70-77"},"PeriodicalIF":2.6000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"APOC3 siRNA and ASO therapy for dyslipidemia.\",\"authors\":\"Jasmine Chebli, Miriam Larouche, Daniel Gaudet\",\"doi\":\"10.1097/MED.0000000000000857\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Purpose of review: </strong>The aim of this review is to present the clinical indications of apolipoprotein C-III (apoC3) inhibition in the therapeutic arsenal for the treatment of lipid disorders and associated risks and to compare the most advanced modalities of apoC3 inhibition currently available or in development, specifically APOC3 antisense oligonucleotides (ASO) and small interfering RNA (siRNA).</p><p><strong>Recent findings: </strong>ApoC3 inhibition significantly decreases triglyceride levels by mechanisms coupling both lipoprotein lipase (LPL) upregulation and LPL-independent mechanisms. The main apoC3 inhibitors in advanced clinical development are the GalNAc-ASO olezarsen and the GalNAc-siRNA plozasiran. Clinical studies conducted with volanesorsen, the olezarsen precursor, showed a favorable effect on hepatic steatosis (nonalcoholic fatty liver disease, NAFLD). Olezarsen does not appear to be associated with the main side effects attributed to volanesorsen including thrombocytopenia. Plozasiran is in advanced clinical development and requires subcutaneous injection every 3 months and present to-date an efficacy and safety profile comparable to that of the monthly ASO.</p><p><strong>Summary: </strong>Inhibition of apoC3 is effective across all the spectrum of hypertriglyceridemia, might have a favorable effect on hepatic steatosis (NAFLD) and the effect of apoC3 inhibition on cardiovascular risk is not limited to its effect on plasma triglycerides. APOC3 GalNAc-conjugated ASO and siRNA are both effective in decreasing plasma apoC3 and triglyceride levels.</p>\",\"PeriodicalId\":10964,\"journal\":{\"name\":\"Current Opinion in Endocrinology & Diabetes and Obesity\",\"volume\":\" \",\"pages\":\"70-77\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Opinion in Endocrinology & Diabetes and Obesity\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1097/MED.0000000000000857\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/2/9 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"ENDOCRINOLOGY & METABOLISM\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Opinion in Endocrinology & Diabetes and Obesity","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1097/MED.0000000000000857","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/2/9 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
Purpose of review: The aim of this review is to present the clinical indications of apolipoprotein C-III (apoC3) inhibition in the therapeutic arsenal for the treatment of lipid disorders and associated risks and to compare the most advanced modalities of apoC3 inhibition currently available or in development, specifically APOC3 antisense oligonucleotides (ASO) and small interfering RNA (siRNA).
Recent findings: ApoC3 inhibition significantly decreases triglyceride levels by mechanisms coupling both lipoprotein lipase (LPL) upregulation and LPL-independent mechanisms. The main apoC3 inhibitors in advanced clinical development are the GalNAc-ASO olezarsen and the GalNAc-siRNA plozasiran. Clinical studies conducted with volanesorsen, the olezarsen precursor, showed a favorable effect on hepatic steatosis (nonalcoholic fatty liver disease, NAFLD). Olezarsen does not appear to be associated with the main side effects attributed to volanesorsen including thrombocytopenia. Plozasiran is in advanced clinical development and requires subcutaneous injection every 3 months and present to-date an efficacy and safety profile comparable to that of the monthly ASO.
Summary: Inhibition of apoC3 is effective across all the spectrum of hypertriglyceridemia, might have a favorable effect on hepatic steatosis (NAFLD) and the effect of apoC3 inhibition on cardiovascular risk is not limited to its effect on plasma triglycerides. APOC3 GalNAc-conjugated ASO and siRNA are both effective in decreasing plasma apoC3 and triglyceride levels.
期刊介绍:
Current Opinion in Endocrinology, Diabetes and Obesity delivers a broad-based perspective on the most recent and exciting developments in the field from across the world. Published bimonthly and featuring twelve key topics – including androgens, gastrointestinal hormones, diabetes and the endocrine pancreas, and neuroendocrinology – the journal’s renowned team of guest editors ensure a balanced, expert assessment of the recently published literature in each respective field with insightful editorials and on-the-mark invited reviews.