Weidan Zhang, Xin Tang, Yang Peng, Yingkun Xu, Li Liu, Shengchun Liu
{"title":"GBP2 通过与 ATG2 结合促进自噬和抑制 PI3K/AKT/mTOR 通路,增强三阴性乳腺癌对紫杉醇的敏感性。","authors":"Weidan Zhang, Xin Tang, Yang Peng, Yingkun Xu, Li Liu, Shengchun Liu","doi":"10.3892/ijo.2024.5622","DOIUrl":null,"url":null,"abstract":"<p><p>Chemoresistance is a major challenge in treating triple‑negative breast cancer (TNBC); chemotherapy remains the primary approach. The present study aimed to elucidate the role of guanylate‑binding protein 2 (GBP2) in activating autophagy in TNBC and its impact on the sensitivity of TNBC cells to paclitaxel (PTX). Transfection with lentivirus was performed to establish TNBC cell lines with stable, high GBP2 expression. The mRNA and protein levels of GBP2 expression were evaluated utilizing reverse transcription‑quantitative PCR and western blotting, respectively. Autophagy in TNBC cells was evaluated using immunoblotting, transmission electron microscopy and fluorescence microscopy. The PI3K/AKT/mTOR pathway proteins and their phosphorylation were detected by immunoblotting, and fluorescence co‑localization analysis was performed to evaluate the association between GBP2 and autophagy‑related protein 2 (ATG2). BALB/c NUDE mice were subcutaneously injected with GBP2 wild‑type/overexpressing MDA‑MB‑231 cells. Low GBP2 expression was detected in TNBC, which was associated with a poor prognosis. Overexpression of GBP2 suppressed cell growth, and especially enhanced autophagy in TNBC. Forced expression of GBP2 significantly increased the PTX sensitivity of TNBC cells, and the addition of autophagy inhibitors reversed this effect. GBP2 serves as a prognostic marker and exerts a notable inhibitory impact on TNBC. It functions as a critical regulator of activated autophagy by co‑acting with ATG2 and inhibiting the PI3K/AKT/mTOR pathway, which contributes to increasing sensitivity of TNBC cells to PTX. Therefore, GBP2 is a promising therapeutic target for enhancing TNBC treatment.</p>","PeriodicalId":14175,"journal":{"name":"International journal of oncology","volume":"64 4","pages":""},"PeriodicalIF":4.5000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10901536/pdf/","citationCount":"0","resultStr":"{\"title\":\"GBP2 enhances paclitaxel sensitivity in triple‑negative breast cancer by promoting autophagy in combination with ATG2 and inhibiting the PI3K/AKT/mTOR pathway.\",\"authors\":\"Weidan Zhang, Xin Tang, Yang Peng, Yingkun Xu, Li Liu, Shengchun Liu\",\"doi\":\"10.3892/ijo.2024.5622\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Chemoresistance is a major challenge in treating triple‑negative breast cancer (TNBC); chemotherapy remains the primary approach. The present study aimed to elucidate the role of guanylate‑binding protein 2 (GBP2) in activating autophagy in TNBC and its impact on the sensitivity of TNBC cells to paclitaxel (PTX). Transfection with lentivirus was performed to establish TNBC cell lines with stable, high GBP2 expression. The mRNA and protein levels of GBP2 expression were evaluated utilizing reverse transcription‑quantitative PCR and western blotting, respectively. Autophagy in TNBC cells was evaluated using immunoblotting, transmission electron microscopy and fluorescence microscopy. The PI3K/AKT/mTOR pathway proteins and their phosphorylation were detected by immunoblotting, and fluorescence co‑localization analysis was performed to evaluate the association between GBP2 and autophagy‑related protein 2 (ATG2). BALB/c NUDE mice were subcutaneously injected with GBP2 wild‑type/overexpressing MDA‑MB‑231 cells. Low GBP2 expression was detected in TNBC, which was associated with a poor prognosis. Overexpression of GBP2 suppressed cell growth, and especially enhanced autophagy in TNBC. Forced expression of GBP2 significantly increased the PTX sensitivity of TNBC cells, and the addition of autophagy inhibitors reversed this effect. GBP2 serves as a prognostic marker and exerts a notable inhibitory impact on TNBC. It functions as a critical regulator of activated autophagy by co‑acting with ATG2 and inhibiting the PI3K/AKT/mTOR pathway, which contributes to increasing sensitivity of TNBC cells to PTX. Therefore, GBP2 is a promising therapeutic target for enhancing TNBC treatment.</p>\",\"PeriodicalId\":14175,\"journal\":{\"name\":\"International journal of oncology\",\"volume\":\"64 4\",\"pages\":\"\"},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2024-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10901536/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International journal of oncology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.3892/ijo.2024.5622\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/2/9 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"ONCOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of oncology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3892/ijo.2024.5622","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/2/9 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"ONCOLOGY","Score":null,"Total":0}
GBP2 enhances paclitaxel sensitivity in triple‑negative breast cancer by promoting autophagy in combination with ATG2 and inhibiting the PI3K/AKT/mTOR pathway.
Chemoresistance is a major challenge in treating triple‑negative breast cancer (TNBC); chemotherapy remains the primary approach. The present study aimed to elucidate the role of guanylate‑binding protein 2 (GBP2) in activating autophagy in TNBC and its impact on the sensitivity of TNBC cells to paclitaxel (PTX). Transfection with lentivirus was performed to establish TNBC cell lines with stable, high GBP2 expression. The mRNA and protein levels of GBP2 expression were evaluated utilizing reverse transcription‑quantitative PCR and western blotting, respectively. Autophagy in TNBC cells was evaluated using immunoblotting, transmission electron microscopy and fluorescence microscopy. The PI3K/AKT/mTOR pathway proteins and their phosphorylation were detected by immunoblotting, and fluorescence co‑localization analysis was performed to evaluate the association between GBP2 and autophagy‑related protein 2 (ATG2). BALB/c NUDE mice were subcutaneously injected with GBP2 wild‑type/overexpressing MDA‑MB‑231 cells. Low GBP2 expression was detected in TNBC, which was associated with a poor prognosis. Overexpression of GBP2 suppressed cell growth, and especially enhanced autophagy in TNBC. Forced expression of GBP2 significantly increased the PTX sensitivity of TNBC cells, and the addition of autophagy inhibitors reversed this effect. GBP2 serves as a prognostic marker and exerts a notable inhibitory impact on TNBC. It functions as a critical regulator of activated autophagy by co‑acting with ATG2 and inhibiting the PI3K/AKT/mTOR pathway, which contributes to increasing sensitivity of TNBC cells to PTX. Therefore, GBP2 is a promising therapeutic target for enhancing TNBC treatment.
期刊介绍:
The main aim of Spandidos Publications is to facilitate scientific communication in a clear, concise and objective manner, while striving to provide prompt publication of original works of high quality.
The journals largely concentrate on molecular and experimental medicine, oncology, clinical and experimental cancer treatment and biomedical research.
All journals published by Spandidos Publications Ltd. maintain the highest standards of quality, and the members of their Editorial Boards are world-renowned scientists.