Luiza Chojnacka-Puchta, Dorota Sawicka, Lidia Zapor, Katarzyna Miranowicz-Dzierzawska
{"title":"评估纳米银和纳米氧化铜对人血脑屏障细胞的细胞毒性和内质网应激反应。","authors":"Luiza Chojnacka-Puchta, Dorota Sawicka, Lidia Zapor, Katarzyna Miranowicz-Dzierzawska","doi":"10.1007/s13353-024-00833-8","DOIUrl":null,"url":null,"abstract":"<p><p>In recent years, it has been generally accepted that metal-based nanoparticles (NPs) may induce stress in the endoplasmic reticulum (ER), a key organelle where protein folding occurs. We examined ER stress in immortalized human cerebral microvascular cells (hCMEC/D3) after exposure to silver-NPs (Ag-NPs)- and copper oxide-NPs (CuO-NPs) induced toxicity at < 10 nm and < 40 nm or < 50 nm diameters, respectively. In cytotoxicity assessments, cells were exposed to different CuO-NPs (5-400 µg/mL) or Ag-NPs (1-10 µg/mL) concentration ranges for 24 h and 72 h, and tetrazole salt reduction assays (EZ4U) were performed. Also, Ag-NP or CuO-NP effects on cell proliferation, apoptosis (caspase 3/7 assays), and ER stress and cell morphology were evaluated. In ER stress assessments, RNA-like endoplasmic reticulum kinase (PERK), activating transcription factor 6 (ATF6), inositol-requiring enzyme 1 (IRE1a), and others stress factor mRNA levels were determined after 24 h treatment using Real-Time PCR. Increased stress sensors (IRE1a, PERK, and ATF6) mRNA levels were observed after exposure to Ag-NPs (< 10 and < 40 nm) or CuO-NPs (< 50 nm). We investigated the expression of tight junction (TJ) proteins (barrier junctions) and showed that both types of NP reduced of OCLN gene expression. Morphological changes were observed after Ag-NP or CuO-NP exposure using holotomographic microscopy. Our data suggest that Ag- and CuO-NPs should undergo future in vitro and in vivo toxicology studies, especially for downstream biomedical application and occupational risk assessments.</p>","PeriodicalId":14891,"journal":{"name":"Journal of Applied Genetics","volume":" ","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2024-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Assessing cytotoxicity and endoplasmic reticulum stress in human blood-brain barrier cells due to silver and copper oxide nanoparticles.\",\"authors\":\"Luiza Chojnacka-Puchta, Dorota Sawicka, Lidia Zapor, Katarzyna Miranowicz-Dzierzawska\",\"doi\":\"10.1007/s13353-024-00833-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In recent years, it has been generally accepted that metal-based nanoparticles (NPs) may induce stress in the endoplasmic reticulum (ER), a key organelle where protein folding occurs. We examined ER stress in immortalized human cerebral microvascular cells (hCMEC/D3) after exposure to silver-NPs (Ag-NPs)- and copper oxide-NPs (CuO-NPs) induced toxicity at < 10 nm and < 40 nm or < 50 nm diameters, respectively. In cytotoxicity assessments, cells were exposed to different CuO-NPs (5-400 µg/mL) or Ag-NPs (1-10 µg/mL) concentration ranges for 24 h and 72 h, and tetrazole salt reduction assays (EZ4U) were performed. Also, Ag-NP or CuO-NP effects on cell proliferation, apoptosis (caspase 3/7 assays), and ER stress and cell morphology were evaluated. In ER stress assessments, RNA-like endoplasmic reticulum kinase (PERK), activating transcription factor 6 (ATF6), inositol-requiring enzyme 1 (IRE1a), and others stress factor mRNA levels were determined after 24 h treatment using Real-Time PCR. Increased stress sensors (IRE1a, PERK, and ATF6) mRNA levels were observed after exposure to Ag-NPs (< 10 and < 40 nm) or CuO-NPs (< 50 nm). We investigated the expression of tight junction (TJ) proteins (barrier junctions) and showed that both types of NP reduced of OCLN gene expression. Morphological changes were observed after Ag-NP or CuO-NP exposure using holotomographic microscopy. Our data suggest that Ag- and CuO-NPs should undergo future in vitro and in vivo toxicology studies, especially for downstream biomedical application and occupational risk assessments.</p>\",\"PeriodicalId\":14891,\"journal\":{\"name\":\"Journal of Applied Genetics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2024-02-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Applied Genetics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s13353-024-00833-8\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Genetics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s13353-024-00833-8","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Assessing cytotoxicity and endoplasmic reticulum stress in human blood-brain barrier cells due to silver and copper oxide nanoparticles.
In recent years, it has been generally accepted that metal-based nanoparticles (NPs) may induce stress in the endoplasmic reticulum (ER), a key organelle where protein folding occurs. We examined ER stress in immortalized human cerebral microvascular cells (hCMEC/D3) after exposure to silver-NPs (Ag-NPs)- and copper oxide-NPs (CuO-NPs) induced toxicity at < 10 nm and < 40 nm or < 50 nm diameters, respectively. In cytotoxicity assessments, cells were exposed to different CuO-NPs (5-400 µg/mL) or Ag-NPs (1-10 µg/mL) concentration ranges for 24 h and 72 h, and tetrazole salt reduction assays (EZ4U) were performed. Also, Ag-NP or CuO-NP effects on cell proliferation, apoptosis (caspase 3/7 assays), and ER stress and cell morphology were evaluated. In ER stress assessments, RNA-like endoplasmic reticulum kinase (PERK), activating transcription factor 6 (ATF6), inositol-requiring enzyme 1 (IRE1a), and others stress factor mRNA levels were determined after 24 h treatment using Real-Time PCR. Increased stress sensors (IRE1a, PERK, and ATF6) mRNA levels were observed after exposure to Ag-NPs (< 10 and < 40 nm) or CuO-NPs (< 50 nm). We investigated the expression of tight junction (TJ) proteins (barrier junctions) and showed that both types of NP reduced of OCLN gene expression. Morphological changes were observed after Ag-NP or CuO-NP exposure using holotomographic microscopy. Our data suggest that Ag- and CuO-NPs should undergo future in vitro and in vivo toxicology studies, especially for downstream biomedical application and occupational risk assessments.
期刊介绍:
The Journal of Applied Genetics is an international journal on genetics and genomics. It publishes peer-reviewed original papers, short communications (including case reports) and review articles focused on the research of applicative aspects of plant, human, animal and microbial genetics and genomics.