Tianle Zhu, Xi Liu, Peng Yang, Yukuai Ma, Pan Gao, Jingjing Gao, Hui Jiang, Xiansheng Zhang
{"title":"肠道微生物群与勃起功能障碍之间的关系","authors":"Tianle Zhu, Xi Liu, Peng Yang, Yukuai Ma, Pan Gao, Jingjing Gao, Hui Jiang, Xiansheng Zhang","doi":"10.5534/wjmh.230181","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>Explore the causal relationship between the gut microbiota and erectile dysfunction (ED) at phylum, class, order, family, and genus levels, and identify specific pathogenic bacteria that may be associated with the onset and progression of ED.</p><p><strong>Materials and methods: </strong>The genetic variation data of 196 human gut microbiota incorporated in our study came from the human gut microbiome Genome Wide Association Studies (GWAS) dataset released by the MiBioGen Consortium. The GWAS statistics for ED were extracted from one study by Bovijn et al., which included 223,805 participants of European ancestry, of whom 6,175 were diagnosed with ED. Subsequently, Mendelian randomization (MR) analysis was carried out to explore whether a causal relationship exists between the gut microbiota and ED. Additionally, bidirectional MR analysis was performed to examine the directionality of the causal relationship.</p><p><strong>Results: </strong>Through MR analysis, we found that family Lachnospiraceae (odds ratio [OR]: 1.27, 95% confidence interval [CI]: 1.05-1.52, p=0.01) and its subclass genus LachnospiraceaeNC2004 group (OR: 1.17, 95% CI: 1.01-1.37, p=0.04) are associated with a higher risk of ED. In addition, genus Oscillibacter (OR: 1.17, 95% CI: 1.02-1.35, p=0.03), genus Senegalimassilia (OR: 1.32, 95% CI: 1.06-1.64, p=0.01) and genus Tyzzerella3 (OR: 1.14, 95% CI: 1.02-1.27, p=0.02) also increase the risk of ED. In contrast, the inverse variance weighted estimate of genus RuminococcaceaeUCG013 (OR: 0.77, 95% CI: 0.61-0.96, p=0.02) suggests that it has a protective effect against the occurrence of ED.</p><p><strong>Conclusions: </strong>This study preliminarily identified 6 bacterial taxa that may have a causal relationship with ED, including family Lachnospiraceae, genus Lachnospiraceae NC2004 group, Oscillibacter, Senegalimassilia, Tyzzerella 3 and Ruminococcaceae UCG013. These identified important bacterial taxa may serve as candidates for microbiome intervention in future ED clinical trials.</p>","PeriodicalId":54261,"journal":{"name":"World Journal of Mens Health","volume":" ","pages":"772-786"},"PeriodicalIF":4.0000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11439808/pdf/","citationCount":"0","resultStr":"{\"title\":\"The Association between the Gut Microbiota and Erectile Dysfunction.\",\"authors\":\"Tianle Zhu, Xi Liu, Peng Yang, Yukuai Ma, Pan Gao, Jingjing Gao, Hui Jiang, Xiansheng Zhang\",\"doi\":\"10.5534/wjmh.230181\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Purpose: </strong>Explore the causal relationship between the gut microbiota and erectile dysfunction (ED) at phylum, class, order, family, and genus levels, and identify specific pathogenic bacteria that may be associated with the onset and progression of ED.</p><p><strong>Materials and methods: </strong>The genetic variation data of 196 human gut microbiota incorporated in our study came from the human gut microbiome Genome Wide Association Studies (GWAS) dataset released by the MiBioGen Consortium. The GWAS statistics for ED were extracted from one study by Bovijn et al., which included 223,805 participants of European ancestry, of whom 6,175 were diagnosed with ED. Subsequently, Mendelian randomization (MR) analysis was carried out to explore whether a causal relationship exists between the gut microbiota and ED. Additionally, bidirectional MR analysis was performed to examine the directionality of the causal relationship.</p><p><strong>Results: </strong>Through MR analysis, we found that family Lachnospiraceae (odds ratio [OR]: 1.27, 95% confidence interval [CI]: 1.05-1.52, p=0.01) and its subclass genus LachnospiraceaeNC2004 group (OR: 1.17, 95% CI: 1.01-1.37, p=0.04) are associated with a higher risk of ED. In addition, genus Oscillibacter (OR: 1.17, 95% CI: 1.02-1.35, p=0.03), genus Senegalimassilia (OR: 1.32, 95% CI: 1.06-1.64, p=0.01) and genus Tyzzerella3 (OR: 1.14, 95% CI: 1.02-1.27, p=0.02) also increase the risk of ED. In contrast, the inverse variance weighted estimate of genus RuminococcaceaeUCG013 (OR: 0.77, 95% CI: 0.61-0.96, p=0.02) suggests that it has a protective effect against the occurrence of ED.</p><p><strong>Conclusions: </strong>This study preliminarily identified 6 bacterial taxa that may have a causal relationship with ED, including family Lachnospiraceae, genus Lachnospiraceae NC2004 group, Oscillibacter, Senegalimassilia, Tyzzerella 3 and Ruminococcaceae UCG013. These identified important bacterial taxa may serve as candidates for microbiome intervention in future ED clinical trials.</p>\",\"PeriodicalId\":54261,\"journal\":{\"name\":\"World Journal of Mens Health\",\"volume\":\" \",\"pages\":\"772-786\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11439808/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"World Journal of Mens Health\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.5534/wjmh.230181\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/4 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"ANDROLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"World Journal of Mens Health","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.5534/wjmh.230181","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/4 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"ANDROLOGY","Score":null,"Total":0}
The Association between the Gut Microbiota and Erectile Dysfunction.
Purpose: Explore the causal relationship between the gut microbiota and erectile dysfunction (ED) at phylum, class, order, family, and genus levels, and identify specific pathogenic bacteria that may be associated with the onset and progression of ED.
Materials and methods: The genetic variation data of 196 human gut microbiota incorporated in our study came from the human gut microbiome Genome Wide Association Studies (GWAS) dataset released by the MiBioGen Consortium. The GWAS statistics for ED were extracted from one study by Bovijn et al., which included 223,805 participants of European ancestry, of whom 6,175 were diagnosed with ED. Subsequently, Mendelian randomization (MR) analysis was carried out to explore whether a causal relationship exists between the gut microbiota and ED. Additionally, bidirectional MR analysis was performed to examine the directionality of the causal relationship.
Results: Through MR analysis, we found that family Lachnospiraceae (odds ratio [OR]: 1.27, 95% confidence interval [CI]: 1.05-1.52, p=0.01) and its subclass genus LachnospiraceaeNC2004 group (OR: 1.17, 95% CI: 1.01-1.37, p=0.04) are associated with a higher risk of ED. In addition, genus Oscillibacter (OR: 1.17, 95% CI: 1.02-1.35, p=0.03), genus Senegalimassilia (OR: 1.32, 95% CI: 1.06-1.64, p=0.01) and genus Tyzzerella3 (OR: 1.14, 95% CI: 1.02-1.27, p=0.02) also increase the risk of ED. In contrast, the inverse variance weighted estimate of genus RuminococcaceaeUCG013 (OR: 0.77, 95% CI: 0.61-0.96, p=0.02) suggests that it has a protective effect against the occurrence of ED.
Conclusions: This study preliminarily identified 6 bacterial taxa that may have a causal relationship with ED, including family Lachnospiraceae, genus Lachnospiraceae NC2004 group, Oscillibacter, Senegalimassilia, Tyzzerella 3 and Ruminococcaceae UCG013. These identified important bacterial taxa may serve as candidates for microbiome intervention in future ED clinical trials.