利用容积多参数磁共振图像进行脑肿瘤分割的三平面集合模型

Snehal Rajput , Rupal Kapdi , Mohendra Roy , Mehul S. Raval
{"title":"利用容积多参数磁共振图像进行脑肿瘤分割的三平面集合模型","authors":"Snehal Rajput ,&nbsp;Rupal Kapdi ,&nbsp;Mohendra Roy ,&nbsp;Mehul S. Raval","doi":"10.1016/j.health.2024.100307","DOIUrl":null,"url":null,"abstract":"<div><p>Automated segmentation methods can produce faster segmentation of tumors in medical images, aiding medical professionals in diagnosis and treatment plans. A 3D U-Net method excels in this task but has high computational costs due to large model parameters, which limits their application under resource constraints. This study targets an optimized triplanar (2.5D) model ensemble to generate accurate segmentation with fewer parameters. The proposed triplanar model uses spatial and channel attention mechanisms and information from multiple orthogonal planar views to predict segmentation labels. In particular, we studied the optimum filter size to improve the accuracy without increasing the network complexity. The model generated output is further post-processed to fine-tune the segmentation results. The Dice similarity coefficients (Dice-score) of the Brain Tumor Segmentation (BraTS) 2020 training set for enhancing tumor (ET), whole tumor (WT), and tumor core (TC) are 0.736, 0.896, and 0.841, whereas, for the validation set, they are 0.713, 0.873, and 0.778, respectively. The proposed base model has only <span><math><mrow><mn>10</mn><mo>.</mo><mn>25</mn><mspace></mspace><mi>M</mi></mrow></math></span> parameters, three times less than BraTS 2020’s best-performing model (ET 0.798, WT 0.912, TC 0.857) on the validation set. The proposed ensemble model has <span><math><mrow><mn>93</mn><mo>.</mo><mn>5</mn><mspace></mspace><mi>M</mi></mrow></math></span> parameters, 1.6 times less than the top-ranked model and two times less than the third-ranked model (ET 0.793, WT 0.911, TC 0.853 on validation set) of BraTS2020 challenge.</p></div>","PeriodicalId":73222,"journal":{"name":"Healthcare analytics (New York, N.Y.)","volume":"5 ","pages":"Article 100307"},"PeriodicalIF":0.0000,"publicationDate":"2024-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772442524000091/pdfft?md5=d29fc0533e483abd517c7cab8004bdcb&pid=1-s2.0-S2772442524000091-main.pdf","citationCount":"0","resultStr":"{\"title\":\"A triplanar ensemble model for brain tumor segmentation with volumetric multiparametric magnetic resonance images\",\"authors\":\"Snehal Rajput ,&nbsp;Rupal Kapdi ,&nbsp;Mohendra Roy ,&nbsp;Mehul S. Raval\",\"doi\":\"10.1016/j.health.2024.100307\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Automated segmentation methods can produce faster segmentation of tumors in medical images, aiding medical professionals in diagnosis and treatment plans. A 3D U-Net method excels in this task but has high computational costs due to large model parameters, which limits their application under resource constraints. This study targets an optimized triplanar (2.5D) model ensemble to generate accurate segmentation with fewer parameters. The proposed triplanar model uses spatial and channel attention mechanisms and information from multiple orthogonal planar views to predict segmentation labels. In particular, we studied the optimum filter size to improve the accuracy without increasing the network complexity. The model generated output is further post-processed to fine-tune the segmentation results. The Dice similarity coefficients (Dice-score) of the Brain Tumor Segmentation (BraTS) 2020 training set for enhancing tumor (ET), whole tumor (WT), and tumor core (TC) are 0.736, 0.896, and 0.841, whereas, for the validation set, they are 0.713, 0.873, and 0.778, respectively. The proposed base model has only <span><math><mrow><mn>10</mn><mo>.</mo><mn>25</mn><mspace></mspace><mi>M</mi></mrow></math></span> parameters, three times less than BraTS 2020’s best-performing model (ET 0.798, WT 0.912, TC 0.857) on the validation set. The proposed ensemble model has <span><math><mrow><mn>93</mn><mo>.</mo><mn>5</mn><mspace></mspace><mi>M</mi></mrow></math></span> parameters, 1.6 times less than the top-ranked model and two times less than the third-ranked model (ET 0.793, WT 0.911, TC 0.853 on validation set) of BraTS2020 challenge.</p></div>\",\"PeriodicalId\":73222,\"journal\":{\"name\":\"Healthcare analytics (New York, N.Y.)\",\"volume\":\"5 \",\"pages\":\"Article 100307\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-02-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2772442524000091/pdfft?md5=d29fc0533e483abd517c7cab8004bdcb&pid=1-s2.0-S2772442524000091-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Healthcare analytics (New York, N.Y.)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2772442524000091\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Healthcare analytics (New York, N.Y.)","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772442524000091","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

自动分割方法可以更快地分割医学影像中的肿瘤,帮助医学专家制定诊断和治疗计划。三维 U-Net 方法在这项任务中表现出色,但由于模型参数较大,计算成本较高,这限制了其在资源有限情况下的应用。本研究以优化的三平面(2.5D)模型集合为目标,以较少的参数生成精确的分割。建议的三平面模型使用空间和通道注意机制以及来自多个正交平面视图的信息来预测分割标签。我们特别研究了在不增加网络复杂度的情况下提高准确度的最佳滤波器大小。模型生成的输出经过进一步的后处理,可对分割结果进行微调。脑肿瘤分割(BraTS)2020训练集的增强肿瘤(ET)、整个肿瘤(WT)和肿瘤核心(TC)的骰子相似系数(Dice-score)分别为0.736、0.896和0.841,而验证集的骰子相似系数(Dice-score)分别为0.713、0.873和0.778。提议的基础模型只有 10.25M 个参数,比 BraTS 2020 在验证集上表现最好的模型(ET 0.798、WT 0.912、TC 0.857)少三倍。提议的集合模型有 9350 万个参数,比 BraTS2020 挑战赛排名第一的模型少 1.6 倍,比排名第三的模型(验证集上 ET 0.793、WT 0.911、TC 0.853)少 2 倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A triplanar ensemble model for brain tumor segmentation with volumetric multiparametric magnetic resonance images

Automated segmentation methods can produce faster segmentation of tumors in medical images, aiding medical professionals in diagnosis and treatment plans. A 3D U-Net method excels in this task but has high computational costs due to large model parameters, which limits their application under resource constraints. This study targets an optimized triplanar (2.5D) model ensemble to generate accurate segmentation with fewer parameters. The proposed triplanar model uses spatial and channel attention mechanisms and information from multiple orthogonal planar views to predict segmentation labels. In particular, we studied the optimum filter size to improve the accuracy without increasing the network complexity. The model generated output is further post-processed to fine-tune the segmentation results. The Dice similarity coefficients (Dice-score) of the Brain Tumor Segmentation (BraTS) 2020 training set for enhancing tumor (ET), whole tumor (WT), and tumor core (TC) are 0.736, 0.896, and 0.841, whereas, for the validation set, they are 0.713, 0.873, and 0.778, respectively. The proposed base model has only 10.25M parameters, three times less than BraTS 2020’s best-performing model (ET 0.798, WT 0.912, TC 0.857) on the validation set. The proposed ensemble model has 93.5M parameters, 1.6 times less than the top-ranked model and two times less than the third-ranked model (ET 0.793, WT 0.911, TC 0.853 on validation set) of BraTS2020 challenge.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Healthcare analytics (New York, N.Y.)
Healthcare analytics (New York, N.Y.) Applied Mathematics, Modelling and Simulation, Nursing and Health Professions (General)
CiteScore
4.40
自引率
0.00%
发文量
0
审稿时长
79 days
期刊最新文献
Optimized early fusion of handcrafted and deep learning descriptors for voice pathology detection and classification A deep neural network model with spectral correlation function for electrocardiogram classification and diagnosis of atrial fibrillation An ensemble convolutional neural network model for brain stroke prediction using brain computed tomography images A hierarchical Bayesian approach for identifying socioeconomic factors influencing self-rated health in Japan An electrocardiogram signal classification using a hybrid machine learning and deep learning approach
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1